Project description:Prkar1a encodes one of the regulatory subunits of PKA. Prkar1a gene ablation in the adrenal cortex is associated with profound phenotypic alterations, constitutive PKA activation and reciprocal inhibition of WNT signallilng pathway We used microarrays to analyse gene expression in response to Prkar1a gene ablation Adrenal glands were dissected from KO (4) and wild-type littermate (4) mice
Project description:MicroRNAs (miRNAs) are small, endogenous, non-protein coding RNAs that are an important means of post-transcriptional gene regulation. Deletion of Dicer, a key miRNA processing enzyme, is embryonic lethal in mice, and tissue-specific Dicer deletion results in developmental defects. Using a conditional knockout model, we generated mice lacking Dicer in the adrenal cortex. These Dicer knockout (KO) mice exhibited perinatal mortality and failure of the adrenal cortex during late gestation between embryonic day 16.5 (E16.5) and E18.5. Further study of Dicer KO adrenals demonstrated a significant loss of Sf1 expressing cortical cells that was histologically evident as early as E16.5 coincident with an increase in p21 and cleaved-caspase 3 staining in the cortex. However, peripheral cortical proliferation persisted in KO adrenals as assessed by anti-PCNA staining. To further characterize the embryonic adrenals from Dicer KO mice, we performed microarray analyses for both gene expression and miRNA on purified RNA isolated from control and KO adrenals of E15.5 and E16.5 embryos. Consistent with the absence of Dicer and the associated loss of miRNA-mediated mRNA degradation, we observed an up-regulation of a small subset of adrenal transcripts in Dicer KO mice, most notably the transcripts coded by the genes Nr6a1 and Acvr1c. Indeed, several miRNAs, including let-7, miR-34c, and miR-21 that are predicted to target these genes for degradation, were also markedly down-regulated in Dicer KO adrenals. Together these data suggest a role for miRNA mediated regulation of a subset of genes that are essential for normal adrenal growth and homeostasis. Adrenals from control and Dicer KO litter mates were pooled separately from 4 individual litters, resulting in a total of 4 control (cre-) and 4 Dicer KO biological replicates at both E15.5 and E16.5.
Project description:MicroRNAs (miRNAs) are small, endogenous, non-protein coding RNAs that are an important means of post-transcriptional gene regulation. Deletion of Dicer, a key miRNA processing enzyme, is embryonic lethal in mice, and tissue-specific Dicer deletion results in developmental defects. Using a conditional knockout model, we generated mice lacking Dicer in the adrenal cortex. These Dicer knockout (KO) mice exhibited perinatal mortality and failure of the adrenal cortex during late gestation between embryonic day 16.5 (E16.5) and E18.5. Further study of Dicer KO adrenals demonstrated a significant loss of Sf1 expressing cortical cells that was histologically evident as early as E16.5 coincident with an increase in p21 and cleaved-caspase 3 staining in the cortex. However, peripheral cortical proliferation persisted in KO adrenals as assessed by anti-PCNA staining. To further characterize the embryonic adrenals from Dicer KO mice, we performed microarray analyses for both gene expression and miRNA on purified RNA isolated from control and KO adrenals of E15.5 and E16.5 embryos. Consistent with the absence of Dicer and the associated loss of miRNA-mediated mRNA degradation, we observed an up-regulation of a small subset of adrenal transcripts in Dicer KO mice, most notably the transcripts coded by the genes Nr6a1 and Acvr1c. Indeed, several miRNAs, including let-7, miR-34c, and miR-21 that are predicted to target these genes for degradation, were also markedly down-regulated in Dicer KO adrenals. Together these data suggest a role for miRNA mediated regulation of a subset of genes that are essential for normal adrenal growth and homeostasis. Adrenals from control and Dicer KO litter mates were pooled separately from 4 individual litters, resulting in a total of 4 control (cre-) and 4 Dicer KO biological
Project description:PRKAR1A inactivating mutations are responsible for primary pigmented nodular adrenocortical disease (PPNAD) whereas somatic GNAS activating mutations cause macronodular disease in the context of McCune-Albright syndrome (MAS), ACTH-independent hyperplasia (AIMAH) and, rarely, cortisol-producing adenomas (CPA). The whole-genome expression profile (WGEP) of normal (pooled) adrenals, PRKAR1A- (3) and GNAS-mutant (3) was studied. Total RNA obtained from adrenal tumors were compared to those samples obtained from normal adrenal pools
Project description:Using the adrenal gland as a model, we investigated the interplay between genetic Znrf3 inactivation and the aging microenvironment. We hypothesized that SF1-Cre-driven Znrf3 cKO mice would progress from adrenal hyperplasia to carcinoma with age. Unexpectedly, after an initial phase of hyperplasia, we found that Znrf3 cKO adrenals steadily regress over time. We demonstrate this phenotypic switch from hyperplasia to regression is driven by activation of cellular senescence and a subsequent senescence-associated secretory phenotype (SASP).
Project description:MicroRNAs (miRNAs) are small, endogenous, non-protein coding RNAs that are an important means of post-transcriptional gene regulation. Deletion of Dicer, a key miRNA processing enzyme, is embryonic lethal in mice, and tissue-specific Dicer deletion results in developmental defects. Using a conditional knockout model, we generated mice lacking Dicer in the adrenal cortex. These Dicer knockout (KO) mice exhibited perinatal mortality and failure of the adrenal cortex during late gestation between embryonic day 16.5 (E16.5) and E18.5. Further study of Dicer KO adrenals demonstrated a significant loss of Sf1 expressing cortical cells that was histologically evident as early as E16.5 coincident with an increase in p21 and cleaved-caspase 3 staining in the cortex. However, peripheral cortical proliferation persisted in KO adrenals as assessed by anti-PCNA staining. To further characterize the embryonic adrenals from Dicer KO mice, we performed microarray analyses for both gene expression and miRNA on purified RNA isolated from control and KO adrenals of E15.5 and E16.5 embryos. Consistent with the absence of Dicer and the associated loss of miRNA-mediated mRNA degradation, we observed an up-regulation of a small subset of adrenal transcripts in Dicer KO mice, most notably the transcripts coded by the genes Nr6a1 and Acvr1c. Indeed, several miRNAs, including let-7, miR-34c, and miR-21 that are predicted to target these genes for degradation, were also markedly down-regulated in Dicer KO adrenals. Together these data suggest a role for miRNA mediated regulation of a subset of genes that are essential for normal adrenal growth and homeostasis.
Project description:MicroRNAs (miRNAs) are small, endogenous, non-protein coding RNAs that are an important means of post-transcriptional gene regulation. Deletion of Dicer, a key miRNA processing enzyme, is embryonic lethal in mice, and tissue-specific Dicer deletion results in developmental defects. Using a conditional knockout model, we generated mice lacking Dicer in the adrenal cortex. These Dicer knockout (KO) mice exhibited perinatal mortality and failure of the adrenal cortex during late gestation between embryonic day 16.5 (E16.5) and E18.5. Further study of Dicer KO adrenals demonstrated a significant loss of Sf1 expressing cortical cells that was histologically evident as early as E16.5 coincident with an increase in p21 and cleaved-caspase 3 staining in the cortex. However, peripheral cortical proliferation persisted in KO adrenals as assessed by anti-PCNA staining. To further characterize the embryonic adrenals from Dicer KO mice, we performed microarray analyses for both gene expression and miRNA on purified RNA isolated from control and KO adrenals of E15.5 and E16.5 embryos. Consistent with the absence of Dicer and the associated loss of miRNA-mediated mRNA degradation, we observed an up-regulation of a small subset of adrenal transcripts in Dicer KO mice, most notably the transcripts coded by the genes Nr6a1 and Acvr1c. Indeed, several miRNAs, including let-7, miR-34c, and miR-21 that are predicted to target these genes for degradation, were also markedly down-regulated in Dicer KO adrenals. Together these data suggest a role for miRNA mediated regulation of a subset of genes that are essential for normal adrenal growth and homeostasis.
Project description:Transcription factor GATA6 is expressed in the fetal and adult adrenal cortex and has been implicated in steroidogenesis. To characterize the role of GATA6 in adrenocortical development and function, we generated mice in which Gata6 was conditionally deleted using Cre-LoxP recombination with Sf1-cre. The adrenal glands of adult Gata6 conditional knockout (cKO) mice were small and had a thin cortex with thickened capsule. Cytomegalic changes were evident in the adrenal glands of fetal and adult cKO mice, and chromaffin cells were ectopically located at the periphery of the glands. The secretion of corticosterone in response to exogenous ACTH was blunted in cKO mice. Cells expressing gonadal-like markers, including Gata4, Amhr2, and Tcf21, accumulated in the adrenal capsule and subcapsule of cKO mice, suggesting aberrant adrenocortical progenitor/stem cell differentiation. Gonadectomy triggered the overexpression of sex steroidogenic differentiation markers, such as Lhcgr and Cyp17, in the adrenal glands of male and female cKO mice. Nulliparous female and orchiectomized male cKO mice lacked an adrenal X-zone. Microarray hybridization identified Pik3c2g as a novel X-zone marker that is downregulated in the adrenal glands of nulliparous female Gata6 cKO mice. Our findings offer genetic proof of the longstanding hypothesis that GATA6 regulates the differentiation of steroidogenic progenitors into corticoid-producing cells. 3 replicates from both conditional knockout of Gata6 in the adrenal gland and control adrenal glands from non-knockout mice were compared