Project description:We generated novel patient derived xenograft (PDX) and cell line -derived xenograft models for pancreatic ductal adenocarcinoma (PDAC) which reflect different molecular subtypes. Pancreatic ductal adenocarcinoma is currently the tumor with the fourth highest mortality rate. Recently, subtypes of PDAC have been reported by Collisson et al (Nat. Med. 17(4) 2011. DOI: 10.1038/nm.2344). However current fetal calf serum (FCS) cultured cell lines do not accurately model these subtypes. We thus generated novel serum-free cell lines derived from primary patient xenografts. We here analyse the gene-expression profiles of the xenografts and the derived cell lines. We show that indeed three different subtypes can be separated in our models based on gene-expression data. Further, we identify upregulation of a drug-detoxification pathway specifically in xenografts and cell lines of one of the subtypes. These models and data will help to better understand inter-patient heterogeneity in PDAC and identify novel drug targets and diagnostic markers.
Project description:The goal of the study was to examine the transcriptional profile of pancreatic cancer cell lines and assess if the molecular subtypes observed in tumor samples were represented in existing cell line models. Cell line models allow us to investigate if the molecular subtype observed in tumor have unique sensitivity profiles to anticancer drugs. 29 pancreatic cancer cell lines were compared to a mixed reference pool of 30 pancreatic cancer cell lines to identify cell line specific gene expression.
Project description:41 lung adenocarcinoma from never-smokers hybridized on Illumina SNP arrays on 13 HumanCNV370-Quadv3 chips. High-resolution array comparative genomic hybridization analysis of lung adenocarcinoma in 41 never smokers for identification of new minimal common regions (MCR) of gain or loss. The SNP array analysis validated copy-number aberrations and revealed that RB1 and WRN were altered by recurrent copy-neutral loss of heterozygosity.The present study has uncovered new aberrations containing cancer genes. The oncogene FUS is a candidate gene in the 16p region that is frequently gained in never smokers. Multiple genetic pathways defined by gains of MYC, deletions of RB1 and WRN or gains on 7p and 7q are involved in lung adenocarcinoma in never smokers. A 'Cartes d'Identite des Tumeurs' (CIT) project from the French National League Against Cancer (http://cit.ligue-cancer.net) 41 samples hybridized on Illumina SNP arrays. Submitter : Fabien PETEL petelf@ligue-cancer.net . Project leader : Pr Pierre FOURET pierre.fouret@psl.aphp.fr