Project description:Natural genetic variation is the raw material of evolution and influences disease development and progression. To analyze the effect of the genetic background on protein expression in the nematode C. elegans (Caenorhabditis elegans), the two genetically highly divergent wild-type strains N2 (Bristol) and CB4856 (Hawaii) were compared quantitatively. In total, we quantified 3,238 unique proteins in three independent SILAC (stable isotope labeling by amino acids in cell culture) experiments. The differentially expressed proteins were enriched for genes that function in insulin-signaling and stress response pathways.
Project description:Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains Bristol N2 and Hawaii CB4856 to enable quantitative trait loci (QTL) mapping. Variation in gene expression was greater in the RILs than in the parental lines, at the proteome as well as at the transcriptome levels. We detected a trans-QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels.
Project description:Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains Bristol N2 and Hawaii CB4856 to enable quantitative trait loci (QTL) mapping. Variation in gene expression was greater in the RILs than in the parental lines, at the proteome as well as at the transcriptome levels. We detected a trans-QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels. Parental genotypes N2 (3x) and CB4856 (3x) and 47 RILs from (Li etal 2006; Vinuela etal 2010 and Elvin etal 2011)
Project description:Background: Copy number variation is an important component of genetic variation in higher eukaryotes. The extent of natural copy number variation in C. elegans is unknown outside of 2 highly divergent wild isolates and the canonical N2 Bristol strain. Results: We have used array comparative genomic hybridization (aCGH) to detect copy number variation in the genomes of 12 natural isolates of Caenorhabditis elegans. Deletions relative to the canonical N2 strain are more common in these isolates than duplications, and indels are enriched in multigene families on the autosome arms. Among the strains in our study, the Hawaiian and Madeiran strains (CB4856 and JU258) carry the largest number of deletions, followed by the Vancouver strain (KR314). Overall we detected 510 different deletions affecting 1136 genes, or over 5% of the genes in the canonical N2 genome. The indels we identified had a median length of 2.7 kb. Since many deletions are found in multiple isolates, deletion loci were used as markers to derive an unrooted tree to estimate genetic relatedness among the strains. Conclusion: Copy number variation is extensive in C. elegans, affecting over 5% of the genes in the genome. The deletions we have detected in natural isolates of C. elegans contribute significantly to the number of deletion alleles available to researchers. The relationships between strains are complex and different regions of the genome possess different genealogies due to recombination throughout the natural history of the species, which may not be apparent in studies utilizing smaller numbers of genetic markers. Twelve C. elegans natural isolate samples were studied. There were no replicates or dye-swap hybridizations.