Project description:The contained data consist of Illumina HiSeq reads generated genomic DNA of Oryza sativa ssp. indica used for comparative coverage aspects with plant-RRBS methylome profiling by bioinformatics analyses. The inbred control line and a derived epiline LR2 of the 4th selfing were analysed using whole-genome bisulfite sequencing.
Project description:The contained data consist of Illumina HiSeq 2500 reads generated from restriction endonuclease digested genomic DNA of Oryza sativa ssp. indica used as proof of concept for plant-RRBS methylome profiling by bioinformatics analyses. Five biological repeats for an inbred control line and a derived epiline of the 4th generation where analysed using two restriction endonuclease combination (MspI-DpnII or MspI-ApekI).
Project description:Comparative transcriptome sequencing in leaf and root tissues of Control and Salt-treated Oryza sativa generated 52.2 and 17.29 million high-quality reads.
Project description:Purpose: Transcriptional profiling of Oryza sativa japonica Nipponbare roots after one, three and seven days post inoculation with Azoarcus olearius BH72 (vs. non-inoculated controls) to understand the changes in transcriptomic response of rice roots to colonization by bacterial endophyte at initial stages of interaction; Additional set-up was included in which bacterial growth was boosted (through increasing 20-times carbon source - malic acid in the plant's hydroponic medium) to study rice roots transcriptome during enhanced colonization by the endophyte after three days post inoculation. Methods: Rice root mRNA profiles after one day, three days (including additional set-ups for boosted colonization), and seven days post inoculation with Azoarcus olearius BH72 and corresponding non-inoculated controls were generated by RNA sequencing, in triplicates, using Illumina NextSeq 500. Raw reads were then filtered, trimmed (PHRED > 33) and mapped onto IRGSP-1 version of Oryza sativa ssp. japonica cv. Nipponbare genome using CLC Genomics Workbench 8.5.1 (Qiagen, Germany). Expression of 17 selected genes was confirmed via RT-qPCR. Results: Using the RNA-Seq technology we obtained transcriptomic data from 24 sequencing libraries, with an average 46,181,160 clean reads per library, of which 87% or more were mapped onto the Oryza sativa ssp. japonica cv. Nipponbare IRGSP-1.0 genome (Fig. S3). We considered genes as differentially regulated (DEG) that exhibited at least 1.5-fold-change in expression level between Azo-colonized and non-colonized roots and FDR<0.05. Conclusions: Bacteria appeared to short-circuit the initial root defense responses for a compatible interaction during endophytic establishment, involving previously unknown putative rice candidate genes.
Project description:The associated files are mass spec data from individual fractions of mixed-bed ion exchange or size exclusion fractionations of native extract made from rice leaves (Oryza sativa, Kitaake cultivar).
Project description:We performed RNA-Seq of leaves of Oryza sativa L. ssp. japonica cv. Nipponbare 48 hours after inoculation with Xanthomonas oryzae pv. oryzae strain PXO99A heterologously expressing the Tal2a effector, the designer TAL effector dT280 which targets a sequence overlapping the predicted Tal2a binding sequence in UCH, or the Tal11b effector. Results provide insight into the genes differentially regulated in a Tal2a- and dT280-specific manner. Examination of mRNA levels in Oryza sativa L. ssp. japonica cv. Nipponbare leaves at 48 hours after inoculation. Each leaf was considered a separate biological replicate.
Project description:Studies have shown that Respiratory Burst Oxidase Homolog B (RBOHB) are involved in stress response in rice plants. Primers were developed for amplification via Polymerase Chain Reaction (PCR) of a region that contained a simple sequence repeat (SSR) in RBOHB. PCR was performed on 6 different varieties of Oryza sativa. PCR product was sequenced on an ABI 3730 capillary sequence machine. Sequence data was aligned to observe differences in SSR length between each rice variety.
Project description:Studies have shown that Rice Salt Sensitive 1 (RSS1) is involved in stress response in rice plants. Primers were developed for amplification via Polymerase Chain Reaction (PCR) of a region that contained a simple sequence repeat (SSR) in RSS1. PCR was performed on 6 different varieties of Oryza sativa. PCR product was sequenced on an ABI 3730 capillary sequence machine. Sequence data was aligned to observe differences in SSR length between each rice variety.