Project description:Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress. We used microarrays to study the genome-wide temporal response of the yeast S. cerevisiae to oxidative stress induced by cumene hydroperoxide. Keywords: time course
Project description:Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress. We used microarrays to study the genome-wide temporal response of the yeast S. cerevisiae to oxidative stress induced by cumene hydroperoxide. Keywords: time course
Project description:To better understand how yeast adapt and respond to sequential stressors, an industrial yeast strain, URM 6670 (also known as BT0510), which is highly flocculent, tolerant to ethanol, osmotic and heat shock stresses, was subjected to three different treatments: 1. osmotic stress followed by ethanol stress, 2. oxidative stress followed by ethanol stress, 3. glucose withdrawal followed by ethanol stress. Samples were collected before the first stress (control), after the first stress and after the second stress (ethanol). RNA was extracted and analyzed by RNAseq.
Project description:Oxidative stress is experienced by all aerobic organisms and results in cellular damage. The damage caused during oxidative stress is particular to the oxidant challenge faced, and so too is the induced stress response. The eukaryote Saccharomyces cerevisiae is sensitive to low concentrations of the lipid hydroperoxide - linoleic acid hydroperoxide (LoaOOH) - and its response is unique relative to other peroxide treatments. Part of the yeast response to LoaOOH includes a change in the cellular requirement for nutrients, such as sulfur, nitrogen and various metal ions. The metabolism of sulfur is involved in antioxidant defence, although the role nitrogen during oxidative stress is not well understood. Investigating the response induced by yeast to overcome LoaOOH exposure, with a particular focus on nitrogen metabolism, will lead to greater understanding of how eukaryotes survive lipid hydroperoxide-induced stress, and associated lipid peroxidation, which occurs in the presence of polyunsaturated fatty acids. We used genome-wide microarrays to investigate the changes in gene expression of S. cerevisiae (Dal80M-NM-^T) to LoaOOH-induced oxidative stress. S. cerevisiae (Dal80M-NM-^T) were exposed to an arresting concentration of LoaOOH (75 M-BM-5M) for 1 hr to induce oxidative stress. Yeast treated with an equivalent volume of solvent (methanol) were used as a control. Following treatment conditions, total RNA was extracted from LoaOOH-treated or control yeast and hybridised onto Affymetrix microarrays.
Project description:Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress. We used microarrays to study the genome-wide temporal response of the yeast S. cerevisiae to oxidative stress induced by cumene hydroperoxide. Keywords: time course The effects of oxidative stress induced by CHP on the transcriptional profile of S. cerevisiae was studied from a dynamical perspective. Yeast cultures were grown in controlled batch conditions, in 1 L fermentors. Three replicate cultures in mid-exponential phase were exposed to 0.19 mM CHP, while three non-treated cultures were used as controls. Samples were collected at t=0 (immediately before adding CHP) and at 3, 6, 12 and 20 min after adding the oxidant. Samples were processed for RNA extraction and profiled using Affymetrix Yeast Genome S98 arrays.
Project description:Oxidative stress is experienced by all aerobic organisms and results in cellular damage. The damage caused during oxidative stress is particular to the oxidant challenge faced, and so too is the induced stress response. The eukaryote Saccharomyces cerevisiae is sensitive to low concentrations of the lipid hydroperoxide - linoleic acid hydroperoxide (LoaOOH) - and its response is unique relative to other peroxide treatments. Part of the yeast response to LoaOOH includes a change in the cellular requirement for nutrients, such as sulfur, nitrogen and various metal ions. The metabolism of sulfur is involved in antioxidant defence, although the role nitrogen during oxidative stress is not well understood. Investigating the response induced by yeast to overcome LoaOOH exposure, with a particular focus on nitrogen metabolism, will lead to greater understanding of how eukaryotes survive lipid hydroperoxide-induced stress, and associated lipid peroxidation, which occurs in the presence of polyunsaturated fatty acids. We used genome-wide microarrays to investigate the changes in gene expression of S. cerevisiae (Dal80Δ) to LoaOOH-induced oxidative stress.