Project description:In the yeast Saccharomyces cerevisiae, accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR) mediated by Hac1p, whereas the heat shock response (HSR) mediated by Hsf1p mainly regulates cytosolic processes and protects the cell from different stresses. In this study, we find that a constitutive activation of the HSR by over-expression of a mutant HSF1 gene could relieve ER stress in both wild type and hac1∆ UPR-deficient cells. We studied the genome-wide transcriptional response in order to identify regulatory mechanisms that govern the interplay between UPR and HSR responses. Interestingly, we find that the regulation of ER stress via HSR is mainly through facilitation of protein folding and secretion and not via the induction of Rpn4-dependent proteasomal activity.
Project description:In the yeast Saccharomyces cerevisiae, accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR) mediated by Hac1p, whereas the heat shock response (HSR) mediated by Hsf1p mainly regulates cytosolic processes and protects the cell from different stresses. In this study, we find that a constitutive activation of the HSR by over-expression of a mutant HSF1 gene could relieve ER stress in both wild type and hac1delta UPR-deficient cells. We studied the genome-wide transcriptional response in order to identify regulatory mechanisms that govern the interplay between UPR and HSR responses. Interestingly, we find that the regulation of ER stress via HSR is mainly through facilitation of protein folding and secretion and not via the induction of Rpn4-dependent proteasomal activity. Four Saccharomyces cerevisiae strains, WT, WT(hsf1), hac1delta and hac1delta(hsf1), were grown in SD-URA medium and treated with 2.5 mM DTT. After two hours induction, samples were taken for RNA extraction and hybridization on Affymetrix microarrays. Biological triplicates were applied.
Project description:Cytoplasmic RNA granules compartmentalize phases of the translation cycle in eukaryotes. We previously reported the localization of oxidized RNA to cytoplasmic foci called oxidized RNA bodies (ORBs) in human cells. We show here that ORBs are RNA granules in Saccharomyces cerevisiae. Several lines of evidence support a role of ORBs in the compartmentalization of no-go decay and ribosome quality control, the translation quality control pathways that recognize and clear aberrant mRNAs, including those with oxidized bases. Translation is required by these pathways and ORBs. Translation quality control factors localize to ORBs. A substrate of translation quality control, a stalled mRNA-ribosome-nascent chain complex, localizes to ORBS. Translation quality control mutants have altered ORB numbers, sizes, or both. In addition, we identify 68 ORB proteins, by immunofluorescence staining directed by proteomics, which further support their role in translation quality control and reveal candidate new factors for these pathways.