Project description:We analyzed RNA-Seq data of two Staphylococcus aureus strains, Newman and SH1000, infected by Kayvirus phage K. Staphylococcus virus K is used in the phage therapy, its genome is 148 kb long consisting of dsDNA with long terminal repeats, and encodes 233 ORFs and 4 tRNAs. The sampling times 0, 2, 5, 10, 20, and 30 minutes after infection were chosen based on the growth characteristics of the phage K at the two S. aureus strains. From the RNA-Seq data we determined transcriptional profile of the phage K and its hosts, which allowed us to identify differentially expressed genes, ncRNAs, and promotor and terminator sites. Transcription of the phage K genes starts immediately after the infection of bacterial cells and we found a gradual take-over by phage K transcripts in the infected cells. The temporal transcriptional profile of phage K was similar in both strains and the relative expression of phage K genes shows three distinct transcript types – early, middle, and late based on the time they reach maximum expression. The bacterial response to phage K infection is similar to the general stress response. It includes the upregulation of nucleotide, amino acid and energy synthesis and transporter genes and the downregulation of transcription factors. The expression of particular virulence genes involved in adhesion and immune system evasion as well as prophage integrases were marginally affected. This work unveils the versatile nature of phage K infection leading to its broad host range
Project description:Staphylococcus aureus (S. aureus) is a known pathogen able to infect humans and animals. Human S. aureus isolates are often associated with carriage of Sa3int prophages combined with loss of beta-hemolysin production due to gene disruption, whereas animal isolates are positive for beta-hemolysin associated with absence of Sa3int prophages. Sa3int prophages are known to contribute to staphylococcal fitness and virulence in human host by providing human-specific virulence factors encoded on the prophage genome. Strain-specific differences in regard to phage transfer, lysogenization and induction are attributable to yet unknown staphylococcal factors specifically influencing prophage gene expression. In this work we used tagRNA-sequencing approach to specifically search for these unknown host factors and differences in prophage gene expression. For this purpose, we established a workflow revealing the first direct comparison for differential gene expression analysis on two distinct single-lysogenic S. aureus isolates. Further, global gene expression patterns were investigated in two S. aureus isolates upon mitomycin C treatment and compared to uninduced conditions. This provides new insights into the tightly linked host-phage interaction network.
Project description:To better understand host/phage interactions and the genetic bases of phage resistance in a model system relevant to potential phage therapy, we isolated several spontaneous mutants of the USA300 S. aureus clinical isolate NRS384 that were resistant to phage K. Six of these had a single missense mutation in the host rpoC gene, which encodes the RNA polymerase beta prime subunit. To examine the hypothesis that the mutations in the host RNA polymerase affect the transcription of phage genes, we performed RNA-seq analysis on total RNA samples collected from NRS384 wild-type (WT) and rpoC G17D mutant cultures infected with phage K, at different time points after infection. Infection of the WT host led to a steady increase of phage transcription relative to the host. Our analysis allowed us to define different early, middle, and late phage genes based on their temporal expression patterns and group them into transcriptional units. Predicted promoter sequences defined by conserved -35, -10, and in some cases extended -10 elements were found upstream of early and middle genes. However, sequences upstream of late genes did not contain clear, complete, canonical promoter sequences, suggesting that factors in addition to host RNA polymerase are required for their regulated expression. Infection of the rpoC G17D mutant host led to a transcriptional pattern that was similar to the WT at early time points. However, beginning at 20 minutes after infection, transcription of late genes (such as phage structural genes and host lysis genes) was severely reduced. Our data indicate that the rpoCG17D mutation prevents the expression of phage late genes, resulting in a failed infection cycle for phage K. In addition to illuminating the global transcriptional landscape of phage K throughout the infection cycle, these studies can inform our investigations into the bases of phage K’s control of its transcriptional program as well as mechanisms of phage resistance.