Project description:In addition to the recently published in situ transcriptomics of LCL skin lesions (Novais et al., Khouri et al.), we herein present the first systemic disease signature of localized cutaneous leishmaniasis (LCL), using Affymetrix microarrays (HuGene 1.0) followed by systems biology analysis of the PBMC transciptome of LCL patients (n=18), as compared to healthy controls (n=12).
Project description:The host immune response plays a critical role not only in protection from human leishmaniasis, but also in promoting disease severity. Although candidate gene approaches in mouse models of leishmaniasis have been extremely informative, a global understanding of the immune pathways active in lesions from human patients is lacking. To address this issue, genome-wide transcriptional profiling of Leishmania braziliensis-infected cutaneous lesions and normal skin controls was carried out. A signature of the L. braziliensis skin lesion was defined that includes over 2,000 differentially regulated genes. Pathway-level analysis of this transcriptional response revealed key biological pathways, as well as specific genes, associated with cutaneous pathology, generating a testable 'metapathway' model of immune-driven lesion pathology, and providing new insights for treatment of human leishmaniasis. Thirty-five skin biopsies were analyzed, including 10 normal skin biopsies (2 from North America and 8 from non-endemic area in Brazil), and 25 skin lesion biopsies (8 early cutaneous lesions, 17 late cutaneous lesions) obtained from Leishmania brazilensis-infected patients presenting at the Corte de Pedra Health Post in Corte de Pedra, Bahia, Brazil.
Project description:Human transcriptome pattern of primary cutaneous lesions from patients with localized cutaneous leishmaniasis and mucosal leishmaniasis
Project description:We evaluated the trancriptome of primary cutaneous leisions caused by infection with Leishmania braziliensis. mRNA-seq technique was used to study the trancriptome of both host and parasite. A total of 10 samples was obtained from primary skin ulcers of two extreme clinical forms of American tegumentary leishmaniasis: (i) individuals that after antimonial treatment cured completely (localized cutaneous leishmaniasis - LCL, n=5) and (ii) individuals that developed mucosal lesions in naso and oropharynx areas long after initial healing of the cutaneous lesion (mucosal leishmaniasis - ML, n=5). The sequencing generated an average of 13+ 5 million reads per samples. The reads were aligned to Homo sapiens (USCS - hg19) and to Leishmania braziliensis (Wellcome Trust Sanger Institute - V2_29072008) genomes. Approximately, 15,000 human genes could be detected in the samples. Low amount of L. braziliensis reads did not allow the evaluation of parasite gene expression. LCL and ML samples showed different patterns of gene expression, indicating a more robust immune response in LCL individuals. In summary, this study demonstrated that next-generation sequencing can be used for identification of potentially important biological pathways and drug targets in the host-response to L. braziliensis infection and for characterization of a gene expression signature that could be used to predict the disease outcome. Moreover, we also showed the ability of this technique in, simultaneously, sequence host and pathogen mRNA. Examination of 10 fragments of cutaneous lesions: 5 from localized cutaneous leishmaniasis patients and 5 from mucosal leishmaniasis patients.
Project description:The host immune response plays a critical role not only in protection from human leishmaniasis, but also in promoting disease severity. Although candidate gene approaches in mouse models of leishmaniasis have been extremely informative, a global understanding of the immune pathways active in lesions from human patients is lacking. To address this issue, genome-wide transcriptional profiling of Leishmania braziliensis-infected cutaneous lesions and normal skin controls was carried out. A signature of the L. braziliensis skin lesion was defined that includes over 2,000 differentially regulated genes. Pathway-level analysis of this transcriptional response revealed key biological pathways, as well as specific genes, associated with cutaneous pathology, generating a testable 'metapathway' model of immune-driven lesion pathology, and providing new insights for treatment of human leishmaniasis.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:As a vector-borne disease, leishmaniasis is caused by a parasitic protozoans of leishmania genus and transmitted by female Phlebotomine sandflies. Depending on the body location where immotile form of the parasite namely amastigote is proliferated, three main clinical forms as cutaneous, muco-cutaneous and visceral leishmaniases are defined. While manifestation of cutaneous leishmaniasis is skin lesions on the exposed part of the body, enlarged lymph nodes, spleen or liver along with fever, fatigue and weight loss are the symptoms of visceral leishmaniasis. The most dangerous form is visceral leishmaniasis since it may end up with fatalities if patients are not treated. The purpose of this study was to investigate the difference between the protein expression profiles of leishmania isolates obtained from visceral and cutaneous leishmaniasis patients. To compare two sample groups to each other genetically, L.infantum was chosen since it causes both visceral and cutaneous leishmaniasis. Additionally, another sample group as cutaneous leishmaniasis caused by L.tropica was included to make the comparison both intra- and interspecies level. For protein profiling, both gel-based and gel-free proteomic approaches were carried out. In brief, a total of 15 samples, 5 from each group, were separated on pI 3-10 2D-PAGE gel. Additionally, 9 of those 15 samples, 3 from each group, were analyzed according to qualitative shotgun proteomics method and differential proteins were determined by drawing venn diagram.