Project description:Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity, have profound effects on crop performance and yeilds To analyze such responses, we initially compared transcriptome changes in ten Arabidopsis thaliana ecotypes using cold, heat, high light, salt and flagellin treatments as single stress factors or their double combinations.
Project description:Crop plants are often exposed to the combination of drought and pathogen stress. Transcriptome studies on Arabidopsis thaliana and other plants unveiled activation of shared molecular defense mechanisms between under individual and combined stresses. These shared plant responses are characterized by commonly regulated genes under individual and combined stresses. Based on the previous studies, G-box binding factor 3 (GBF3) is one of the regulatory components of such shared responses. However, the mechanistic understanding on the role of GBF3 under combined drought and pathogen stress is not yet decoded. Using genetic approaches, we demonstrated Atgbf3 mutant plants are more susceptible under individual and combined drought and Pseudomonas syringae pv. tomato DC3000 stresses as compared to the wild-type plants. We further analyzed the global transcriptome of Atgbf3 mutant under combined stress to identify its downstream targets to further validate the role of AtGBF3 in combined stress. We used microarrays to detail the global transcriptome reprogramming during AtGBF3-mediated regulation of combined stress.
Project description:Transcriptional profiling of Arabidopsis thaliana cotyledons comparing ecotype Col-0 (Control) with lea13 T-DNA line to elucidate the response mechanism to drought stress conditions that rely on LEA protein function.
Project description:Plants acclimate to environmental fluctuations by transitory reconfigurations the homeostatic network. Primary studies suggested that transcriptome responses to deal with fluctuations in light intensity and temperature tend to reversibility after stress removal in the model plant Arabidopsis thaliana. To gain more insight into this pattern in the context of acclimation, RNA-Seq analysis were conducted in Arabidopsis thaliana after different abiotic stress treatments consisting in high light (HL), high humidity, drought, heat, cold and combinations among factors or after recovery periods. Our transcriptome study is in line of a general pattern wherby transcriptome changes in response to adverse environments are prone to return to the basal state during the de-acclimation phase.
Project description:We performed a transcriptomic analysis of Pi starvation responses in Arabidopsis thaliana (Columbia-0) wild type plants under phosphate starvation stress and in plants with altered PHR1(-like) activity, comparing mutants of phr1 and phr1-phl1 grown in phosphate-lacking medium. Results show the central role of PHR1 and functionally redundant members of its family in the control of transcriptional responses to Pi starvation.