Project description:UV radiation is a ubiquitous component of solar radiation that affects plant growth and development. Analysis of natural variation in response to UV radiation revealed significant differences among natural accessions of Arabidopsis thaliana. However, the genetic basis of this is to a large extent unknown. Here, we analyzed the response of Arabidopsis accessions to UV radiation stress by performing RNA-sequencing of three UV sensitive and three UV resistant accessions. The genome-wide transcriptional analysis revealed a large number of genes significantly up- or down-regulated only in sensitive or only in resistant accessions, respectively. Mutant analysis of few selected candidate genes suggested by the RNA-sequencing results indicate a connection between UV radiation stress and plant-pathogen-like defense responses.
Project description:UV radiation is a ubiquitous component of solar radiation that affects plant growth and development. Analysis of natural variation in response to UV radiation revealed significant differences among natural accessions of Arabidopsis thaliana. However, the genetic basis of this is to a large extent unknown. Here, we analyzed the response of Arabidopsis accessions to UV radiation stress by performing RNA-sequencing of three UV sensitive and three UV resistant accessions. The genome-wide transcriptional analysis revealed a large number of genes significantly up- or down-regulated only in sensitive or only in resistant accessions, respectively. Mutant analysis of few selected candidate genes suggested by the RNA-sequencing results indicate a connection between UV radiation stress and plant-pathogen-like defense responses. Examination of transcriptional changes in response to UV treatment in Arabidopsis natural accessions
Project description:We performed a transcriptomic analysis of Pi starvation responses in Arabidopsis thaliana (Columbia-0) wild type plants under phosphate starvation stress and in plants with altered PHR1(-like) activity, comparing mutants of phr1 and phr1-phl1 grown in phosphate-lacking medium. Results show the central role of PHR1 and functionally redundant members of its family in the control of transcriptional responses to Pi starvation.