Project description:Background : Candida albicans is a diploid pathogenic fungus not yet amenable to routine genetic investigations. Understanding aspects of the regulation of its biological functions and the assembly of its protein complexes would lead to further insight into the biology of this common disease-causing microbial agent. Results: We have developed a toolbox allowing in vivo protein tagging by PCR-mediated homologous recombination with TAP, HA and MYC tags. The transformation cassettes were designed to accommodate a common set of integration primers. The tagged proteins can be used to perform tandem affinity purification (TAP) or chromatin immunoprecipitation coupled with microarray analysis (ChIP-CHIP). Tandem affinity purification of C. albicans Nop1 revealed the high conservation of the small processome composition in yeasts. Data obtained with in vivo TAP-tagged Tbf1, Cbf1 and Mcm1 recapitulates previously published genome-wide location profiling by ChIP-CHIP. We also designed a new reporter system for in vivo analysis of transcriptional activity of gene loci in C. albicans. Conclusion: This toolbox provides a basic setup to perform purification of protein complexes and increase the number of annotated transcriptional regulators and genetic circuits in C. albicans.
Project description:Background : Candida albicans is a diploid pathogenic fungus not yet amenable to routine genetic investigations. Understanding aspects of the regulation of its biological functions and the assembly of its protein complexes would lead to further insight into the biology of this common disease-causing microbial agent. Results: We have developed a toolbox allowing in vivo protein tagging by PCR-mediated homologous recombination with TAP, HA and MYC tags. The transformation cassettes were designed to accommodate a common set of integration primers. The tagged proteins can be used to perform tandem affinity purification (TAP) or chromatin immunoprecipitation coupled with microarray analysis (ChIP-CHIP). Tandem affinity purification of C. albicans Nop1 revealed the high conservation of the small processome composition in yeasts. Data obtained with in vivo TAP-tagged Tbf1, Cbf1 and Mcm1 recapitulates previously published genome-wide location profiling by ChIP-CHIP. We also designed a new reporter system for in vivo analysis of transcriptional activity of gene loci in C. albicans. Conclusion: This toolbox provides a basic setup to perform purification of protein complexes and increase the number of annotated transcriptional regulators and genetic circuits in C. albicans. Two independent biological replicates of ChIP-CHIP of Mcm1-TAP in yeast and hyphal states. ChIP-CHIP of Cbf1-TAP and Tbf1-TAP.
Project description:The Hxk1 protein of Candida albicans is a moonlighting protein with a wide variety of functions. It phosphorylates N-acetylglucosamine (GlcNAc) which is necessary for different purposes in the cell including energy and chitin production. Further, this protein is a regulator for morphogenesis independent of its function during GlcNAc catabolism.To identify the regulatory role of Hxk1 and putative downstream regulator Hxk2, we performed CUT&RUN experiments for GFP-tagged Hxk1 strains and GFP-tagged Hxk2 strains.
Project description:Aneuploidy and the evolution of aneuploid karyotypes of Candida albicans strains was identified using aCGH. Whole chromosome and segmental aneuploidies, (specifically on the left arm of chromosome 5 - shown to be due to isochromosome formation) are associated with the appearance of resistance to the antifungal drug fluconazole. Keywords: Comparative Genomic Hybridization
Project description:Map ORC binding sites to identify replication origins in C. albicans by using polyclonal ORC antibodies (gift from Stephen Bell Lab). Due to the unsynchronized nature of Candida cells, log-phase cultures were taken to perfoem ChIP-chip experiments to find the genome-wide ORC binding sites.