Project description:Mucuna pruriens extract MPE pretreatment may have a direct protective effect on heart (other than immunological neutralization of the venom neurotoxin and phospholipase A2 by the anti-MPE antibodies) that renders the heart more resistant to the toxic action of the venom The direct protective effect probably involves functional changes to the cardiac tissue that enable the heart to resist the reduction of contractility and rate induced by the cobra venom.To explore the possibility of the direct action of MPE pretreatment on heart and to understand the molecular events involved in the protection of MPE pretreatment against the lethal action of Naja sputatrix venom, gene expression studies were carried out using microarray analysis.
Project description:Mucuna pruriens extract MPE pretreatment may have a direct protective effect on heart (other than immunological neutralization of the venom neurotoxin and phospholipase A2 by the anti-MPE antibodies) that renders the heart more resistant to the toxic action of the venom The direct protective effect probably involves functional changes to the cardiac tissue that enable the heart to resist the reduction of contractility and rate induced by the cobra venom.To explore the possibility of the direct action of MPE pretreatment on heart and to understand the molecular events involved in the protection of MPE pretreatment against the lethal action of Naja sputatrix venom, gene expression studies were carried out using microarray analysis. Rats were divided into four groups (n=6): negative control (abbreviated as ‘negative’ group), MPE pretreated group (abbreviated as ‘MPE’ group), N. sputatrix venom-challenge group (abbreviated as ‘NS’ group) and N. sputatrix venom-challenge to MPE pretreated animals group (abbreviated as ‘MPE-NS’ group). In the ‘MPE’ group, rats were injected with MPE at a dose of 21 mg/kg (i.p.), on day 0, 7 and 14, and sacrificed on day 21. In the ‘negative’ group (the untreated, control group), rats were injected with saline of the same volume and sacrificed also on day 21. Hearts were then harvested immediately. In the N. sputatrix venom-challenge group (‘NS’ group), untreated rats were challenged with 1.5 LD50 (1.25 ?g/g) of N. sputatrix venom whereas in the venom challenge to MPE pretreated animals group (the ‘MPE-NS’ group), MPE pretreated rats were challenged with 1.5 LD50 (1.25 ?g/g) of N. sputatrix venom, both on day 21. For the ‘NS’ and ‘MPE-NS’ group, the rats were observed for 24 h after venom challenged and hearts were harvested as soon as death occurred or 24 h after the venom injection, whichever occurred first.
Project description:Mucuna pruriens is the best known natural source of L-dopa, the gold standard for treatment of Parkinsonism. M. pruriens varieties are protein rich supplements, and are used as food and fodder worldwide. Here, we report L-dopa contents in seeds of fifty six accessions of four M. pruriens varieties, M. pruriens var. pruriens, M. pruriens var. hirsuta, M. pruriens var. utilis and M. pruriens var. thekkadiensis, quantified by HPTLC-densitometry. L-dopa contents varied between 0.58 to 6.42 (%, dr. wt.). High and low L-dopa yielding genotypes/chemotypes of M. pruriens could be multiplied for medicinal and nutritional purposes, respectively. HPTLC profiles of M. pruriens seeds on repeated extraction (24 h) in 1:1 formic acid-alcohol followed by development in butanol:acetic acid:water (4:1:1, v/v) showed consistent degradation of L-dopa (Rf 0.34 ± 0.02) into a second peak (Rf 0.41 ± 0.02). An average of 52.11% degradation of L-dopa was found in seeds of M. pruriens varieties. Since M. pruriens seeds and/or L-dopa are used for treatment of Parkinson's disease and as an aphrodisiac both in modern and/or traditional systems of medicine, the finding of high level of L-dopa degradation (in pure form and in M. pruriens extracts) into damaging quinones and ROS is very significant.