Project description:To investigate the regulatory effect of hsa_circ_0070512 gene on prostate cancer cell line PC3, we established the PC3 hsa_circ_0070512 overexpressing cell line (OE) and its negative control group (vector). Then we used RNA-seq to obtain gene expression profile analysis
Project description:Genome-wide DNA methylation profiling of human PC3 invasive prostate cancer cell line treated with vehicle control (SAH, S-adenosylhomocysteine) and with SAM (S-adenosylmethionine) as well as of untreated human LNCaP non-invasive prostate cancer cell line. The Illumina Infinium 450k Human DNA Methylation BeadChip v1.2 was used to obtain DNA methylation profiles across approximately 450,000 CpGs in human cell lines exposed to described treatments. Samples included biological triplicate of PC3 control (SAH treated), biological triplicate of PC3 treated with SAM, and biological duplicate of LNCaP untreated.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Genome wide DNA methylation profiling of androgen-sensitive and –refractory prostate cancer cells. The Illumina Infinium HumanMethylation450 Beadchip was used to obtain DNA methylation profiles across approximately 480.000 CpGs in Prostate cancer cell lines showing different sensitivity to hormonal treatments. Samples included the androgen receptor negative cell lines PC3 and DU145, the androgen sensitive cell line LNCaP and the LNCaP abl cell line expressing androgen receptor but refractory prostate cancer cell line to hormonal treatments.
Project description:Gene expression profile in bone metastatic prostate cancer cell line, PC3, following growth in bone marrow conditioned medium (BMCM)
Project description:Background: The acquisition of drug resistance is one of the most malignant phenotypes of cancer. MicroRNAs (miRNAs) have been implicated in various types of cancers, but its role in taxane-resistance of prostate cancer remains poorly understood. Methods: In order to identify miRNAs related to taxane-resistance, miRNA profiling was performed using prostate cancer PC3 cells and paclitaxel-resistant PC3 cell lines established from PC3 cells. Microarray analysis of mRNA expression was also conducted to search for potential target genes of miRNA. The effects of ectopic expression of miRNA on cell growth, tubulin polymerization, drug sensitivity and apoptotic signaling pathway were investigated in a paclitaxel-resistant PC3 cell line. Results: The expression of miR-130a was down-regulated in all paclitaxel-resistant cell lines compared with parental PC3 cells. Based on mRNA microarray analysis, we identified SLAIN1 and CAV2 as potential target genes for miR-130a. Transfection with a miR-130a precursor into a paclitaxel-resistant cell line suppressed cell growth and increased the sensitivity to paclitaxel. Lastly, ectopic expression of miR-130a did not affect the polymerized tubulin level, but activated apoptotic signaling through activation of caspase-8. Conclusion: These results suggested that miR-130a may be involved in the paclitaxel-resistance and could be a therapeutic target for taxane-resistant prostate cancer.
Project description:Background: The acquisition of drug resistance is one of the most malignant phenotypes of cancer. MicroRNAs (miRNAs) have been implicated in various types of cancers, but its role in taxane-resistance of prostate cancer remains poorly understood. Methods: In order to identify miRNAs related to taxane-resistance, miRNA profiling was performed using prostate cancer PC3 cells and paclitaxel-resistant PC3 cell lines established from PC3 cells. Microarray analysis of mRNA expression was also conducted to search for potential target genes of miRNA. The effects of ectopic expression of miRNA on cell growth, tubulin polymerization, drug sensitivity and apoptotic signaling pathway were investigated in a paclitaxel-resistant PC3 cell line. Results: The expression of miR-130a was down-regulated in all paclitaxel-resistant cell lines compared with parental PC3 cells. Based on mRNA microarray analysis, we identified SLAIN1 and CAV2 as potential target genes for miR-130a. Transfection with a miR-130a precursor into a paclitaxel-resistant cell line suppressed cell growth and increased the sensitivity to paclitaxel. Lastly, ectopic expression of miR-130a did not affect the polymerized tubulin level, but activated apoptotic signaling through activation of caspase-8. Conclusion: These results suggested that miR-130a may be involved in the paclitaxel-resistance and could be a therapeutic target for taxane-resistant prostate cancer.