Project description:Effects of forage type and age at which forage provision is started on bacteria associated with digesta throughout the gastro-intestinal tract of pre-weaned Holstein calves
Project description:In order to test the development of gastrointestinal tract (GIT) in pre-weaned cavles, the GIT tissues were collected from day 0, day 7, day 21 and day 42 calves. RNA-seq was used to measure the transcriptome profiles. The RNA-seq analysis revealed the fast development of small intestine and rumen tissue during the first week after birth.
Project description:The objectives of the study were to use RNA-Seq to examine the effect of (i) breed and (ii) gradual weaning, on the whole blood mRNA transcriptome of artificially reared Holstein-Friesian and Jersey calves. The calves were gradually weaned over 14 days (day (d) -13 to d 0) and mRNA transcription was examined one day before gradual weaning was initiated (d -14), one day after weaning (d 1) and 8 days after weaning (d 8). RNA-seq analysis was carried out on RNA extracted from whole blood. Gradual weaning had no effect on gene expression (P>0.05).There were 550 differentially expressed genes at a false discovery rate of 10% and with a â¥1.5-fold change, between Holstein-Friesian and Jersey calves on d -14, 490 on d 1, and 411 on d 8. GOseq/KEGG pathway analysis showed that the cytokine-cytokine receptor interaction pathway and the neuroactive ligand-receptor interaction pathway were over-represented between breeds on all days (P<0.01; Qâ¤0.1). These results demonstrate that the gradual weaning practiced here does not compromise the welfare of artificially-reared dairy calves, evidenced by the lack of expression changes in any genes in response to gradual weaning. These data also suggest differences in cell signalling and immune responses between breeds. Eight Holstein-Friesian and eight Jersey bull calves were group housed indoors and individually fed milk replacer and concentrate using an automatic feeder. Calves were gradually weaned by reducing milk-replacer from 6 litres to 0 litres over 14 days (d) (d -13 to d 0). Calves were blood sampled on d -14, 1, and 8, relative to weaning (d 0). RNA-seq analysis was carried out on RNA extracted from whole blood.
Project description:Gastrointestinal (GI) mucus is continuously secreted and lines the entire length of the GI tract. Essential for health, it keeps the noxious luminal content away from the epithelium and propels forward the digesta. The aim of our study was to characterize the composition and structures of mucus throughout the various GI segments in dog. Mucus from the stomach, small intestine (duodenum, jejunum, ileum), and large intestine (cecum, proximal and distal colon) was collected from 5 dogs. pH and water content of GI mucus and digesta were analyzed. Composition of all GI-tract segments from a domestic and a laboratory dog was determined by label-free global proteomics. A colonic-focussed composition analysis with TMT-labelled proteomics was used on jenunal and proximal and distal colonic mucus samples from 3 laboratory and 1 domestic dog. Finally, the composition of jejunal and colonic mucus samples of 3 laboratory and 1 domestic dog was evaluated with lipidomics and metabolomics. Structural properties were investigated using cryoSEM and rheology. The proteome was similar across the different GI segments. The highest abundant secreted gel-forming mucin in the gastric mucus was mucin 5AC, whether mucin 2 had highest abundance in the intestinal mucus. Lipid and metabolite abundance was generally higher in the jejunal mucus than the colonic mucus. In conclusion, the mucus is a highly viscous and hydrated material. The proteins, lipids and metabolites were similar throughout the GI tract, although abundances depended on location. These data provide an important baseline for future studies on human and canine intestinal diseases and the dog model in drug absorption.
Project description:Serotonin is a monoamine that regulates processes such as energy balance and immune function. Manipulating this pathway in growing dairy calves could promote growth and development by modulating functions and signaling pathways within key organs. In this study, we characterized the adipose and muscle transcriptome of pre-weaned calves with increased serotonin bioavailability through the elucidation of differentially expressed genes.
2020-06-05 | GSE151781 | GEO
Project description:Rumen microbiota in weaned Holstein bull calves
| PRJNA1198307 | ENA
Project description:Rectal microbiota in weaned Holstein bull calves