Project description:EMG produced TPA metagenomics assembly of the Increased intestinal microbial diversity following fecal microbiota transplant for active Crohn''s disease (human gut metagenome) data set
Project description:Susceptibility to Crohn's disease, a complex inflammatory disease involving the small intestine, is controlled by over 30 loci. One Crohn's disease risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG16 (ref. 2). It is not known how ATG16L1 or autophagy contributes to intestinal biology or Crohn's disease pathogenesis. To address these questions, we generated and characterized mice that are hypomorphic for ATG16L1 protein expression, and validated conclusions on the basis of studies in these mice by analysing intestinal tissues that we collected from Crohn's disease patients carrying the Crohn's disease risk allele of ATG16L1. Here we show that ATG16L1 is a bona fide autophagy protein. Within the ileal epithelium, both ATG16L1 and a second essential autophagy protein ATG5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell that functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment. ATG16L1- and ATG5-deficient Paneth cells exhibited notable abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to ATG16L1-deficient Paneth cells including increased expression of genes involved in peroxisome proliferator-activated receptor (PPAR) signalling and lipid metabolism, of acute phase reactants and of two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, Crohn's disease patients homozygous for the ATG16L1 Crohn's disease risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy-protein-deficient mice and expressed increased levels of leptin protein. Thus, ATG16L1, and probably the process of autophagy, have a role within the intestinal epithelium of mice and Crohn's disease patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells. Experiment Overall Design: 4 Samples: 2 replicates of Atg16-hypomorph Paneth cells and 2 replicates of Wildtype Paneth cells.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:Alterations in intestinal microbiota and intestinal short chain fatty acids profiles have been associated with the pathophysiology of obesity and insulin resistance. Whether intestinal microbiota dysbiosis is a causative factor in humans remains to be clarified We examined the effect of fecal microbial infusion from lean donors on the intestinal microbiota composition, glucose metabolism and small intestinal gene expression. Male subjects with metabolic syndrome underwent bowel lavage and were randomised to allogenic (from male lean donors with BMI<23 kg/m2, n=9) or autologous (reinfusion of own feces, n=9) fecal microbial transplant. Insulin sensitivity and fecal short chain fatty acid harvest were measured at baseline and 6 weeks after infusion. Intestinal microbiota composition was determined in fecal samples and jejunal mucosal biopsies were also analyzed for the host transcriptional response. Insulin sensitivity significantly improved six weeks after allogenic fecal microbial infusion (median Rd: from 26.2 to 45.3 μmol/kg.min, p<0.05). Allogenic fecal microbial infusion increased the overall amount of intestinal butyrate producing microbiota and enhanced fecal harvest of butyrate. Moreover, the transcriptome analysis of jejunal mucosal samples revealed an increased expression of genes involved in a G-protein receptor signalling cascade and subsequently in glucose homeostasis. Lean donor microbial infusion improves insulin sensitivity and levels of butyrate-producing and other intestinal microbiota in subjects with the metabolic syndrome. We propose a model wherein these bacteria provide an attractive therapeutic target for insulin resistance in humans. (Netherlands Trial Register NTR1776).
Project description:Susceptibility to Crohn's disease, a complex inflammatory disease involving the small intestine, is controlled by over 30 loci. One Crohn's disease risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG16 (ref. 2). It is not known how ATG16L1 or autophagy contributes to intestinal biology or Crohn's disease pathogenesis. To address these questions, we generated and characterized mice that are hypomorphic for ATG16L1 protein expression, and validated conclusions on the basis of studies in these mice by analysing intestinal tissues that we collected from Crohn's disease patients carrying the Crohn's disease risk allele of ATG16L1. Here we show that ATG16L1 is a bona fide autophagy protein. Within the ileal epithelium, both ATG16L1 and a second essential autophagy protein ATG5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell that functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment. ATG16L1- and ATG5-deficient Paneth cells exhibited notable abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to ATG16L1-deficient Paneth cells including increased expression of genes involved in peroxisome proliferator-activated receptor (PPAR) signalling and lipid metabolism, of acute phase reactants and of two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, Crohn's disease patients homozygous for the ATG16L1 Crohn's disease risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy-protein-deficient mice and expressed increased levels of leptin protein. Thus, ATG16L1, and probably the process of autophagy, have a role within the intestinal epithelium of mice and Crohn's disease patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells.
Project description:Hepcidin is demonstrated to be the key iron regulatory hormone, produced by the liver. Here we show an unexpected role of hepcidin as a master initiator of the local and systemic inflammatory response. We found that hepcidin was highly expressed in the colon of two major idiopathic inflammatory bowel diseases : Crohn's disease (CD) and ulcerative colitis (UC). Thanks to the generation of intestinal specific hepcidin KO mice (Hepc{delta}int), we found in a DSS-induced colitis model that hepcidin mediated the induction of key inflammatory cytokines and was protective against intestinal injury. In a model of LPS-induced acute inflammation, intestinal hepcidin expression was increased through a TLR4 dependent pathway andwas required for intestinal neutrophil infiltration and inflammation. Strikingly, intestinal hepcidin was absolutely required for the systemic production of key inflammatory cytokines (IL-6, CXCL1, TNF-alpha ...) as well as for the setting of the hypoferremia of inflammation. In a sepsis model, Hepc{delta}int mice were protected against LPS-induced mortality. Mechanistically, we showed that hepcidin was a direct neutrophil chemoattractant and a proinflammatory molecule in macrophages through a Myd88 dependent pathway. Altogether, we demonstrated that Hepcidin is a key new essential component of the immune system and may be a promising target in many inflammatory diseases. We used microarrays to detail the global program of gene expression of BMDM treat with hepcidin for 1 hour.
Project description:We investigated the transcriptomic landscape of human CD8 tissue-resident T cells (Trm) derived from the ileum to study the differences in compartment (epithelium and lamina propria), CD103+ and CD103- Trm and inflammation-induced changes (active Crohn's disease vs healthy controls).
Project description:Investigating alterations the intestinal microbiome in a diet induced obesity (DIO) rat model after fecal transplant from rats, which underwent Roux-Y-Gastric-Bypass surgery (RYGB). The microbiomes of the RYGB-donor rats, the DIO rats, and DIO rats after receiving the fecal transplant from the RYGB rats. As controls lean rats as well as lean, RYGB and DIO rats after antibiotics treatment were used.
Project description:BACKGROUND: The intestinal microbiota play a key role in the onset, progression, and recurrence of Crohn’s disease (CD). Most microbiome studies assay fecal material, which does not provide region-specific information on mucosally adherent bacteria that directly interact with host systems. Changes in luminal oxygen has been proposed as a contributor to CD dybiosis. METHODS: 16S rRNA data was generated using colonic and ileal mucosal from patients with CD and without inflammatory bowel diseases (nonIBD). We developed profiles reflecting bacterial abundance within defined aerotolerance categories. Bacterial diversity, composition, and aerotolerance profiles were compared across intestinal regions and disease phenotypes. RESULTS: Bacterial diversity decreased in CD in both ileum and colon. Aerotolerance profiles significantly differed between intestinal segments in nonIBD, though both were dominated by obligate anaerobes, as expected. In CD, high relative levels of obligate anaerobes were maintained in the colon and increased in the ileum. Relative abundance of similar and distinct taxa were altered in colon and ileum. Notably, several obligate anaerobes, such as Bacteroides fragilis, dramatically increased in CD in one or both intestinal segments, though specific increasing taxa varied across patients. Increased abundance of taxa from the Proteobacteria phylum was found only in the ileum. Bacterial diversity was significantly reduced in resected pre-operative tissues of patients that developed disease recurrence across two independent cohorts, with common lower abundance of bacteria from the Bacteroides, Streptococcus, and Blautia genera. CONCLUSIONS: Mucosally adherent bacteria in colon and ileum show distinct alterations in CD that provide additional insights not revealed in fecal material.
Project description:In this study, mouse microbial populations were depleted using an antibiotic cocktail. The microbiome was reestablished using fecal matter transplant or single-strain bacteria species. Volatile organic compounds emitted from the mice were screened to determine if the diversity of the microbial populations can alter host volatilome.