Project description:In this study we investigate the molecular physiology of the main S. cerevisiae commercial strain (PE-2) used on Brazilian bioethanol process under two distinct conditions: typical (TF) and flocculated (co-aggregated - FL) fermentation. Transcriptional machinery of PE-2 was assessed by high throughput sequencing-based methods (RNA-seq) during industrial fed-batch fermentations. Data from comparative analysis revealed distinct transcriptional profiles among conditions, characterized mainly by a deep gene repression on FL process. We investigated the transcriptional changes in S. cerevisiae PE-2 strain under industrial fermentation conditions using RNA-seq protocols. We analyzed 13 fermentation time-points where 6 time-points on typical fermentation conditions (TF) and 7 time-points on flocculate conditions(FL). The raw data have been submitted to SRA as SRP014755
Project description:In this study we investigate the molecular physiology of the main S. cerevisiae commercial strain (PE-2) used on Brazilian bioethanol process under two distinct conditions: typical (TF) and flocculated (co-aggregated - FL) fermentation. Transcriptional machinery of PE-2 was assessed by high throughput sequencing-based methods (RNA-seq) during industrial fed-batch fermentations. Data from comparative analysis revealed distinct transcriptional profiles among conditions, characterized mainly by a deep gene repression on FL process.
Project description:The molecular basis for glucose and xylose fermentation by industrial Saccharomyces cerevisiae is of interest to promote bioethanol production We used microarrays to investigate the transcriptional difference of a industrial strain cultured in both single sugar media and a mixed sugar medium of glucose and xylose
Project description:In the search for renewable sources of energy, bioethanol stands out as a benchmark biofuel because its production is based on a proven technological platform. Bioethanol is produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (~2 SNPs per kilobase), and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, and appear to reflect ectopic homologous recombination between repetitive DNA sequences. Despite the complex karyotype of JAY270, this diploid, when sporulated, had a high frequency of viable spores (~93%). Crosses of haploids derived from JAY270 to a haploid of the unrelated laboratory strain S288c also resulted in diploids that had good spore viability (75-95%). Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis and spore viability, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures that may be associated with a fitness benefit. We also explore features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high cell mass production and fermentation kinetics, high temperature growth and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Project description:Second fermentation in a bottle supposes such specific conditions that undergo yeasts to a set of stress situations like high ethanol, low nitrogen, low pH or sub-optimal temperature. Also, yeast have to grow until 1 or 2 generations and ferment all sugar available while they resist increasing CO2 pressure produced along with fermentation. Because of this, yeast for second fermentation must be selected depending on different technological criteria such as resistance to ethanol, pressure, high flocculation capacity, and good autolytic and foaming properties. All of these stress factors appear sequentially or simultaneously, and their superposition could amplify their inhibitory effects over yeast growth. Considering all of the above, it has supposed interesting to characterize the adaptive response of commercial yeast strain EC1118 during second-fermentation experiments under oenological/industrial conditions by transcriptomic profiling. We have pointed ethanol as the most relevant environmental condition in the induction of genes involved in respiratory metabolism, oxidative stress, autophagy, vacuolar and peroxisomal function, after comparison between time-course transcriptomic analysis in alcoholic fermentation and transcriptomic profiling in second fermentation. Other examples of parallelism include overexpression of cellular homeostasis and sugar metabolism genes. Finally, this study brings out the role of low-temperature on yeast physiology during second-fermentation.
Project description:The environmental stresses and inhibitors encounted by Saccharomyces cerevisiae strains are main limiting factors in bioethanol fermentation. Investigation of the molecular mechanisms underlying the stresses-related phenotypes diversities within and between S. cerevisiae populations could guide the construction of yeast strains with improved stresses tolerance and fermentation performances. Here, we explored the genetic characteristics of the bioethanol S. cerevisiae strains, and elucidated the genetic variations correlated with its advantaged traits (higher ethanol yield under sever conditions and better tolerance to multiple stresses compared to an S288c derived laboratory strain BYZ1). Firstly, pulse-field gel electrophoresis combined with array-comparative genomic hybridization was used to compare the genome structure of industrial strains and the laboratory strain BYZ1.
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:Second fermentation in a bottle supposes such specific conditions that undergo yeasts to a set of stress situations like high ethanol, low nitrogen, low pH or sub-optimal temperature. Also, yeast have to grow until 1 or 2 generations and ferment all sugar available while they resist increasing CO2 pressure produced along with fermentation. Because of this, yeast for second fermentation must be selected depending on different technological criteria such as resistance to ethanol, pressure, high flocculation capacity, and good autolytic and foaming properties. All of these stress factors appear sequentially or simultaneously, and their superposition could amplify their inhibitory effects over yeast growth. Considering all of the above, it has supposed interesting to characterize the adaptive response of commercial yeast strain EC1118 during second-fermentation experiments under oenological/industrial conditions by transcriptomic profiling. We have pointed ethanol as the most relevant environmental condition in the induction of genes involved in respiratory metabolism, oxidative stress, autophagy, vacuolar and peroxisomal function, after comparison between time-course transcriptomic analysis in alcoholic fermentation and transcriptomic profiling in second fermentation. Other examples of parallelism include overexpression of cellular homeostasis and sugar metabolism genes. Finally, this study brings out the role of low-temperature on yeast physiology during second-fermentation. S. cerevisiae EC1118 pre-adapted to ethanol cells and sucrose (20 g/L) were added to 20 L of base wine (Cavas Freixenet, Sant Sadurní D’Anoia, Spain). Complete volume was bottled with 350 mL each one. All were sealed and incubated in static conditions at 16ºC for approximately 40 days after tirage. Three samples were taken during the process for transcriptional study of the physiological adaptation of yeast cells to industrial second fermentation conditions. A sample corresponding to exponential-growth phase under unstressed conditions (in YPD at 28ºC) was used as an external reference. Three timepoints from second-fermentation were monitored and three biological replicates from each timepoint were analyzed.
Project description:In our previous work, we showed the positive effect of the magnesium and the negative effect of the copper on yeast fermentation performance. The magnesium increases the ethanol yield and a faster glucose consumption by the yeast, on the other hand, the copper provides an opposite effect in yeast under fermentation condition. Therefore, from this contrasting effect we performed the gene-wide expression analysis in the industrial yeast Saccharomyces cerevisiae JP1 under fermentation condition in order to reveal the gene expression profile upon magnesium and copper supplementation.
Project description:In the search for renewable sources of energy, bioethanol stands out as a benchmark biofuel because its production is based on a proven technological platform. Bioethanol is produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (~2 SNPs per kilobase), and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, and appear to reflect ectopic homologous recombination between repetitive DNA sequences. Despite the complex karyotype of JAY270, this diploid, when sporulated, had a high frequency of viable spores (~93%). Crosses of haploids derived from JAY270 to a haploid of the unrelated laboratory strain S288c also resulted in diploids that had good spore viability (75-95%). Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis and spore viability, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures that may be associated with a fitness benefit. We also explore features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high cell mass production and fermentation kinetics, high temperature growth and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies. This microarray experiment was used to compare the relative gene expression levels between two unrelated S. cerevisiae strain backgrounds: JAY270 and JAY309. Total RNA from each strain was prepared and used to synthesize differentially labeled cDNAs (Cy5 and C3 respectively). A positive Log2 (Red/Green) ratio indicates transcripts more abundant in JAY270, while a negative Log2 (Red/Green) ration indicates transcripts more abundant in JAY309.