Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees.
Project description:New insights into the transcriptional regulation of behavioral plasticity in honey bees gained by analyzing brain genes expression with the CAGEscan technique that involves identification of specific transcription factors, cis regulatory motifs and alternate transcriptional start sites Examination of 2 different types of Honey Bee Apis Mellifera samples (Nurse and Foragers)
Project description:We studied the molecular mechanisms underlying the impact of pollen nutrients on honey bee (Apis mellifera) health and how those nutrients improve resistance to parasites. Using digital gene expression, we determined the changes in gene expression induced by pollen intake in worker bees parasitized or not by the mites Varroa destructor, known for suppressing immunity and decreasing lifespan of bees.
Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees. Comparisons of control vs Nosema ceranae bees
Project description:We studied the molecular mechanisms underlying the impact of pollen nutrients on honey bee (Apis mellifera) health and how those nutrients improve resistance to parasites. Using digital gene expression, we determined the changes in gene expression induced by pollen intake in worker bees parasitized or not by the mites Varroa destructor, known for suppressing immunity and decreasing lifespan of bees. bees with or without verroa, and fed or not fed pollen
Project description:Our aims in this study were: 1) to identify the miRNAs of the bumble bees Bombus terrestris and B. impatiens; 2) to compare the total numbers of miRNAs between both bumble bee species and between them and the honey bee, Apis mellifera; and 3) to test whether the sequences and expression patterns of miRNAs were conserved between species. To investigate each of these aims we used miRNA-seq (deep sequencing of miRNA-enriched libraries) in B. terrestris, and bioinformatics prediction programs to identify miRNAs in both Bombus species. We identified 131 miRNAs in B. terrestris, and 114 in B. impatiens; of these, 17 were new miRNAs that had not previously been sequenced in any species. We found a striking level of difference in the miRNAs present between Bombus and A. mellifera, with 103 miRNAs in A. mellifera not being present in the genomes of the two bumble bees.
Project description:This experiment examines gene expression profiles in individual honey bee brains (adult worker Apis mellifera). The purpose is to test whether behavioral phenotype can be predicted by expression profiles in individual brains in a naturalistic context (i.e., colonies in the field). The two behavioral phenotypes examined are 'nurse' and 'forager'. Other factors examined are age, genotype (full-sister group), and colony environment.<br><br> An additional processed data file is available on the FTP site for this experiment.
Project description:A green fluorescence protein (GFP)-derived dsRNA (dsRNA-GFP) has been used as an exogenous control for Apis mellifera RNAi assays by multiple research groups. Its sequence does not share any significant homology with any known honey bee genes. Although dsRNA-GFP is not expected to trigger an RNAi response in treated bees, undesirable effects on gene expression, pupal pigmentation or developmental timing have been routinely observed. To better understand the multiple molecular and phenotypic effects of dsRNA-GFP in honey bees and to evaluate its use as a control for RNAi studies, we examined the impact of dsRNA-GFP on global gene expression patterns in developing workers. We found that dsRNA-GFP causes large-scale changes in gene expression associated with multiple biological processes. Furthermore, dsRNA-GFP exposure tended to preferentially decrease, rather than increase, expression of genes compared to controls.