Project description:Analysis of Bxpc-3 cells treated with serotonin under metabolic stress induced by serum deprivation. Serotonin (5-HT), a well-known neuromodulator with both neurotransmitter and neuroendocrine functions, is also involved in tumorigenesis. Results provide insight into molecular basis of serotonin in pancreatic cancer.
Project description:This microarray is an analysis of differentially expressed genes in three pancreatic ductal adenocarcinoma cell lines treated with LXR-agonist GW 3965. We first report that GW 3965 has antiproliferative effects in three PDAC cell lines. This microarray was designed to identify key mechanisms of the antiproliferative effect of LXR agonists within pancreatic cancer cell lines. Total RNA obtained from BxPC-3, MIA-PaCa-2, and PANC-1 pancreatic cancer cells grown in culture treated GW 3965 or ethanol (vehicle control) for 72 hours.
Project description:The dolichyl-diphosphooligosaccharide-protein glycosyltransferase non-catalytic subunit (DDOST) is a key component of the oligosaccharyltransferase complex catalyzing N-linked glycosylation in the endoplasmic reticulum lumen. DDOST is associated with several cancers and congenital disorders of glycosylation. However, its role in pancreatic cancer remains elusive, despite its enriched pancreatic expression. Using quantitative mass spectrometry, we identify 30 differentially expressed proteins and phosphopeptides (DEPs) after DDOST knockdown in the pancreatic ductal adenocarcinoma (PDAC) cell line PA-TU-8988T. We evaluated DDOST / DEP protein-protein interaction networks using STRING database, correlation of mRNA levels in pancreatic cancer TCGA data, and biological processes annotated to DEPs in Gene Ontology database. The inferred DDOST regulated phenotypes were experimentally verified in two PDAC cell lines, PA-TU-8988T and BXPC-3. We found decreased proliferation and cell viability after DDOST knockdown, whereas ER-stress, ROS-formation and apoptosis were increased. In conclusion, our results support an oncogenic role of DDOST in PDAC by intercepting cell stress events and thereby reducing apoptosis. As such, DDOST might be a potential biomarker and therapeutic target for PDAC.