Project description:MglA is a transcriptional regulator of genes that contribute to the virulence of Francisella tularensis, a highly infectious pathogen and the causative agent of tularemia. This study used a label-free shotgun proteomics method to determine the F. tularensis subsp. novicida (F. novicida) proteins that are regulated by MglA. The differences in relative protein amounts between wild-type F. novicida and the mglA mutant were derived directly from the average peptide precursor ion intensity values measured with the mass spectrometer by using a suite of mathematical algorithms. Among the proteins whose relative amounts changed in an F. novicida mglA mutant were homologs of oxidative and general stress response proteins. The F. novicida mglA mutant exhibited decreased survival during stationary-phase growth and increased susceptibility to killing by superoxide generated by the redox-cycling agent paraquat. The F. novicida mglA mutant also showed increased survival upon exposure to hydrogen peroxide, likely due to increased amounts of the catalase KatG. Our results suggested that MglA coordinates the stress response of F. tularensis and is likely essential for bacterial survival in harsh environments.
Project description:Francisella tularensis is composed of a number of subspecies with varied geographic distribution, host ranges, and virulence. In view of these marked differences, comparative functional genomics may elucidate some of the molecular mechanism(s) behind these differences. In this study a shared probe microarray was designed that could be used to compare the transcriptomes of Francisella tularensis subsp. tularensis Schu S4 (Ftt), Francisella tularensis subsp. holarctica OR960246 (Fth), Francisella tularensis subsp. holarctica LVS (LVS), and Francisella novicida U112 (Fn). To gain insight into expression differences that may be related to the differences in virulence of these subspecies, transcriptomes were measured from each strain grown in vitro under identical conditions, utilizing a shared probe microarray. The human avirulent Fn strain exhibited high levels of transcription of genes involved in general metabolism, which are pseudogenes in the human virulent Ftt and Fth strains, consistent with the process of genome decay in the virulent strains. Genes encoding an efflux system (emrA2 cluster of genes), siderophore (fsl operon), acid phosphatase, LPS synthesis, polyamine synthesis, and citrulline ureidase were all highly expressed in Ftt when compared to Fn, suggesting that some of these may contribute to the relative high virulence of Ftt. Genes expressed at a higher level in Ftt when compared to the relatively less virulent Fth included genes encoding isochorismatases, cholylglycine hydrolase, polyamine synthesis, citrulline ureidase, Type IV pilus subunit, and the Francisella Pathogenicity Island protein PdpD. Fth and LVS had very few expression differences, consistent with the derivation of LVS from Fth. This study demonstrated that a shared probe microarray designed to detect transcripts in multiple species/subspecies of Francisella enabled comparative transcriptional analyses that may highlight critical differences that underlie the relative pathogenesis of these strains for humans. This strategy could be extended to other closely-related bacterial species for inter-strain and inter-species analyses.
Project description:We used an inhalation mouse model of infection to query a collection of 2149 mutants in a Francisella tularensis subsp. novicida background for genes required for growth, survival and systemic dissemination. A microarray-based genome-wide negative selection screen (Microarray tracking of transposon mutants = MATT) allowed us to monitor the behavior of transposon insertions in 1371 unique genes. Interestingly most of these genes persisted in lung and colonized liver and spleen. We found 44 (35%) genes negatively selected in lung and 81 (65%) genes negatively selected in liver and/or spleen. If negative selection in lung occurred, the attenuated mutants in general persisted at 24h after infection, disseminated to liver and/or spleen and appeared to be lost in lung after 48 to 72h of infection. These genes with a strong phenotype in lung but also potential for dissemination might be attractive vaccine or drug candidates. Keywords: Genome-Wide Negative Selection Screen
Project description:To understand differences of gene expression profiles between Francisella strains RNA profiles of Francisella strains were generated by deep sequencing, in triplicate, using NovaSeq6000. qRT–PCR validation was performed using SYBR Green assays. Our study represents the first detailed differential transcriptomic analysis of Francisella strains , with biologic replicates, generated by RNA-seq technology.
Project description:Francisella tularensis subsp. novicida U112 phospholipids, extracted without hydrolysis, consist mainly of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, and two lipid A species, designated A1 and A2. These lipid A species, present in a ratio of 7:1, comprise 15% of the total phospholipids, as judged by 32Pi labeling. Although lipopolysaccharide is detectable in F. tularensis subsp. novicida U112, less than 5% of the total lipid A is covalently linked to it. A1 and A2 were analyzed by electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry, gas chromatography/mass spectrometry, and NMR spectroscopy. Both compounds are disaccharides of glucosamine, acylated with primary 3-hydroxystearoyl chains at positions 2, 3, and 2' and a secondary palmitoyl residue at position 2'. Minor isobaric species and some lipid A molecules containing a 3-hydroxypalmitoyl chain in place of 3-hydroxystearate are also present. The 4'- and 3'-positions of A1 and A2 are not derivatized, and 3-deoxy-d-manno-octulosonic acid (Kdo) is not detectable. The 1-phosphate groups of both A1 and A2 are modified with an alpha-linked galactosamine residue, as shown by NMR spectroscopy and gas chromatography/mass spectrometry. An alpha-linked glucose moiety is attached to the 6'-position of A2. The lipid A released by mild acid hydrolysis of F. tularensis subsp. novicida lipopolysaccharide consists solely of component A1. F. tularensis subsp. novicida mutants lacking the arnT gene do not contain a galactosamine residue on their lipid A. Formation of free lipid A in F. tularensis subsp. novicida might be initiated by an unusual Kdo hydrolase present in the membranes of this organism.
Project description:Francisella tularensis, the zoonotic cause of tularemia, can infect numerous mammals and other eukaryotes. Although studying F. tularensis pathogenesis is essential to comprehending disease, mammalian infection is just one step in the ecology of Francisella species. F. tularensis has been isolated from aquatic environments and arthropod vectors, environments in which chitin could serve as a potential carbon source and as a surface for attachment and growth. We show that F. tularensis subsp. novicida forms biofilms during the colonization of chitin surfaces. The ability of F. tularensis to persist using chitin as a sole carbon source is dependent on chitinases, since mutants lacking chiA or chiB are attenuated for chitin colonization and biofilm formation in the absence of exogenous sugar. A genetic screen for biofilm mutants identified the Sec translocon export pathway and 14 secreted proteins. We show that these genes are important for initial attachment during biofilm formation. We generated defined deletion mutants by targeting two chaperone genes (secB1 and secB2) involved in Sec-dependent secretion and four genes that encode putative secreted proteins. All of the mutants were deficient in attachment to polystyrene and chitin surfaces and for biofilm formation compared to wild-type F. novicida. In contrast, mutations in the Sec translocon and secreted factors did not affect virulence. Our data suggest that biofilm formation by F. tularensis promotes persistence on chitin surfaces. Further study of the interaction of F. tularensis with the chitin microenvironment may provide insight into the environmental survival and transmission mechanisms of this pathogen.
Project description:We used whole-genome analysis and subsequent characterization of geographically diverse strains using new genetic signatures to identify distinct subgroups within Francisella tularensis subsp. tularensis group A.I: A.I.3, A.I.8, and A.I.12. These subgroups exhibit complex phylogeographic patterns within North America. The widest distribution was observed for A.I.12, which suggests an adaptive advantage.
Project description:In Francisella tularensis subsp. tularensis, DsbA has been shown to be an essential virulence factor and has been observed to migrate to multiple protein spots on two-dimensional electrophoresis gels. In this work, we show that the protein is modified with a 1,156-Da glycan moiety in O-linkage. The results of mass spectrometry studies suggest that the glycan is a hexasaccharide, comprised of N-acetylhexosamines, hexoses, and an unknown monosaccharide. Disruption of two genes within the FTT0789-FTT0800 putative polysaccharide locus, including a galE homologue (FTT0791) and a putative glycosyltransferase (FTT0798), resulted in loss of glycan modification of DsbA. The F. tularensis subsp. tularensis ΔFTT0798 and ΔFTT0791::Cm mutants remained virulent in the murine model of subcutaneous tularemia. This indicates that glycosylation of DsbA does not play a major role in virulence under these conditions. This is the first report of the detailed characterization of the DsbA glycan and putative role of the FTT0789-FTT0800 gene cluster in glycan biosynthesis.