Project description:Timed sleep restriction designed to mimic human shift work was performed over a 2 week period in mice. On the final day, tissues were collected at 6 hour intervals to exmaine the effects of sleep restriction on circadian gene expression. 3 mice were used at each time point, for both controls and sleep restricted groups.
Project description:Timed sleep restriction designed to mimic human shift work was performed over a 2 week period in mice. On the final day, tissues were collected at 6 hour intervals to exmaine the effects of sleep restriction on circadian gene expression.
Project description:Timed sleep restriction designed to mimic human shift work was performed over a 2 week period in mice. On the final day, MBH biopsies were collected at 6 hour intervals to exmaine the effects of sleep restriction on circadian gene expression. (MBH = mediobasal hypothalamus)
Project description:We hybridzed cRNA from epididymal white adipose tissue collected at ZT18 of control animals and TSR animals (TSR: these mice were sleep restricted for 6 hours every day by gentle handling for 5 consecutive days and killed on the last day at ZT18) mice used in this study were C57BL/6 control mice were compared to timed sleep restriction mice (TSR: these mice were sleep restricted for 6 hours every day by gentle handling for 5 consecutive days and killed on the last day at ZT18)
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Meal timing is essential in synchronization of circadian rhythms in different organ systems through clock-dependent and -independent mechanisms. The liver is a critical metabolic organ whose circadian clock and transcriptome can be readily reset by meal timing. However, it remains largely unexplored how circadian rhythms in the liver are organized in time-restricted feeding that intervenes meal timing. Here, we applied data-independent acquisition proteomics to characterize circadian features associated with day/sleep- (DRF) and night/wake (NRF)-time restricted feeding in nocturnal female mice. The transcriptomics and metabolomics datasets are public (see www.circametdb.org.cn).
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.