Project description:Atoh1 is the master transcription factor of intestinal secretory cells. Lineage-tracing model of Atoh1+ve cells showed that the progeny of Atoh1+ve cells can develop into either LGR5+ve or LGR5-ve cells. Present analysis compared the gene expression profile of Atoh1+ve cell-derived LGR5+ve cells and LGR5-ve cells, compared to the resident LGR5+ve cell population of the mouse small intestine.
Project description:Atoh1 is the master transcription factor of secretory-type intestinal epithelial cells. By using a lineage-tracing model of Atoh1+ve cells, those Atoh1+ve epithelial cells and their descendants were collected from the colon of DSS-colitis mice or from the control mice, and subjected to global gene expression analysis.
Project description:Perturbed intestinal epithelial homeostasis demonstrated as decreased Lgr5+ intestinal stem cells (Lgr5 ISCs) and increased secretory lineages were observed in our study where Lkb1 was specfically deleted in Lgr5 ISCs using Lgr5-EGFP-creERT2 (Tamoxifen) deletor. To gain mechanistic insight how Lkb1 maintains intestinal epithelial stem cell homeostasis, Lkb1 deficient ISCs (Lgr5-high cells) and progenitors (Lgr5-low cells) are isolated by flow cytometry and profiled by RNA sequencing to compare with controls (Lkb1 wild type ISCs and progenitors).
Project description:Intestinal epithelial stem cells (ISCs) are the focus of recent intense study. Current in vitro models rely on supplementation with the Wnt agonist R-spondin1 to support robust growth, ISC self-renewal, and differentiation. Intestinal subepithelial myofibroblasts (ISEMFs) are important supportive cells within the ISC niche. We hypothesized that co-culture with ISEMF enhances the growth of ISCs in vitro and allows for their successful in vivo implantation and engraftment. ISC-containing small intestinal crypts, FACS-sorted single ISCs, and ISEMFs were procured from C57BL/6 mice. Crypts and single ISCs were grown in vitro into enteroids, in the presence or absence of ISEMFs. ISEMFs enhanced the growth of intestinal epithelium in vitro in a proximity-dependent fashion, with co-cultures giving rise to larger enteroids than monocultures. Co-culture of ISCs with supportive ISEMFs relinquished the requirement of exogenous R-spondin1 to sustain long-term growth and differentiation of ISCs. Mono- and co-cultures were implanted subcutaneously in syngeneic mice. Co-culture with ISEMFs proved necessary for successful in vivo engraftment and proliferation of enteroids; implants without ISEMFs did not survive. ISEMF whole transcriptome sequencing and qPCR demonstrated high expression of specific R-spondins, well-described Wnt agonists that supports ISC growth. Specific non-supportive ISEMF populations had reduced expression of R-spondins. The addition of ISEMFs in intestinal epithelial culture therefore recapitulates a critical element of the intestinal stem cell niche and allows for its experimental interrogation and biodesign-driven manipulation. Two samples of intestinal subepithelial myofibroblasts were used in this study.
Project description:Background & Aims: Hierarchical organization of intestine relies on their stem cells by self-renew and producing committed progenitors. Although signals like Wnt are known to animate the continued renewal by maintaining intestinal stem cells (ISCs) activity, molecular mechanisms especially E3 ubiquitin ligases that modulate ISCs ‘stemness’ and supportive niche have not been well understood. Here, we investigated the role of Cullin 4B (Cul4b) in regulating ISC functions. Methods: We generated mice with intestinal epithelial-specific disruption of Cul4b (pVillin-cre; Cul4bfn/Y), inducible disruption of Cul4b (Lgr5-creERT2; Cul4bfn/Y, CAG-creERT2; Cul4bfn/Y) and their control (Cul4bfn/Y). Intestinal tissues were analyzed by histology, immunofluorescence, RNA sequencing and mass spectrum. Intestinal organoids deprived from mice with pVillin-Cre; Cul4bfn/Y, Lgr5-Cre; Cul4bfn/Y, Tg-Cul4b and their controls were used in assays to measure intestinal self-renewal, proliferation and differentiation. Wnt signaling and intestinal markers were analyzed by immunofluorescence and immunoblot assays. Differential proteins upon Cul4b ablation or Cul4b-interacting proteins were identified by mass spectrometry. Results: Cul4b specifically located at ISCs zone. Block of Cul4b impaired intestinal homeostasis maintenance by reduced self-renewal and proliferation. Transcriptome analysis revealed that Cul4b-null intestine lose ISC characterization and showed disturbed ISC niche. Mechanistically, reactivated Wnt pathway could recover intestinal dysfunction of Cul4b knockout mice. Analysis of differential total and ubiquitylated proteins uncovered the novel targeting substrate of Cullin-Ring ubiquitin ligase 4b (CRL4b), immunity-related GTPase family M member 1 (Irgm1) in intestine. Decreased Irgm1 rescued abnormally interferon signaling, overemphasized autophagy and downstream phosphate proteins in Cul4b knockout mice. Conclusion: We conclude that Cul4b is essential for ISC self-renewal and Paneth cell function by targeting Irgm1 and modulating Wnt signaling. Our results demonstrate that Cul4b is a novel ISC stemness and niche regulator.
Project description:To describe the protein profile in hippocampus, colon and ileum tissue’ changing after the old faeces transplants, we adopted a quantitative label free proteomics approach.
Project description:The small intestine is a rapidly proliferating organ that is maintained by a small population of Lgr5-expressing intestinal stem cells (ISCs). However, several Lgr5-negative ISC populations have been identified, and this remarkable plasticity allows the intestine to rapidly respond to both the local environment and to damage. The mediators of such plasticity are still largely unknown. Using intestinal organoids and mouse models, we show that upon ribosome impairment (driven by Rptor deletion, amino acid starvation, or low dose cyclohexamide treatment) ISCs gain an Lgr5-negative, fetal-like identity. This is accompanied by a rewiring of metabolism. Our findings suggest that the ribosome can act as a sensor of nutrient availability, allowing ISCs to respond to the local nutrient environment. Mechanistically, we show that this phenotype requires the activation of ZAKɑ, which in turn activates YAP, via SRC. Together, our data reveals a central role for ribosome dynamics in intestinal stem cells, and identify the activation of ZAKɑ as a critical mediator of stem cell identity.
Project description:To explore the role of circular RNA circBtnl1 on self-renewal of intestinal stem cells(ISCs), we isolated Lgr5-GFP+ ISCs from wild-type or circBtnl1-deficient mice.