Project description:The molecular mechanisms underlying asplenia, a condition often associated with overwhelming infections remain largely unknown. During spleen development, the transcription factor TLX1 controls morphogenesis and organ expansion, and loss of it causes spleen agenesis. However, the downstream signaling pathways that are deregulated in the absence of TLX1 are mostly unknown. Herein, we demonstrate that loss of Tlx1 in the splenic mesenchyme causes increased retinoic acid (RA) signaling. Increased RA activity causes premature differentiation of the splenic mesenchyme and reduced vasculogenesis of the splenic anlage. Moreover, excess or deficiency in RA signaling, as observed in Cyp26b1 or Rdh10 mutants respectively, also results in spleen growth arrest. Genome-wide analysis revealed that TLX1 binds RA-associated genes through the AP-1 site and cooperates with the AP-1 family transcription factors to regulate transcription. Pharmacological inhibition of RA signaling partially rescues the spleen defect. These findings establish the critical role of TLX1 in controlling RA metabolism, and provide novel mechanistic insights into the molecular determinants underlying congenital asplenia.
Project description:The molecular mechanisms underlying asplenia, a condition often associated with overwhelming infections remain largely unknown. During spleen development, the transcription factor TLX1 controls morphogenesis and organ expansion, and loss of it causes spleen agenesis. However, the downstream signaling pathways that are deregulated in the absence of TLX1 are mostly unknown. Herein, we demonstrate that loss of Tlx1 in the splenic mesenchyme causes increased retinoic acid (RA) signaling. Increased RA activity causes premature differentiation of the splenic mesenchyme and reduced vasculogenesis of the splenic anlage. Moreover, excess or deficiency in RA signaling, as observed in Cyp26b1 or Rdh10 mutants respectively, also results in spleen growth arrest. Genome-wide analysis revealed that TLX1 binds RA-associated genes through the AP-1 site and cooperates with the AP-1 family transcription factors to regulate transcription. Pharmacological inhibition of RA signaling partially rescues the spleen defect. These findings establish the critical role of TLX1 in controlling RA metabolism, and provide novel mechanistic insights into the molecular determinants underlying congenital asplenia. Samples: 3 replicates of E13.5 spleens from Tlx1 heterozygous embryos were compared to 3 replicates of E13.5 spleens from Tlx1 homozygous embryos
Project description:The molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1. Herein, we have shown that TLX1-dependent regulation of retinoic acid (RA) metabolism is critical for spleen organogenesis. In a murine model, loss of Tlx1 during formation of the splenic anlage increased RA signaling by regulating several genes involved in RA metabolism. Uncontrolled RA activity resulted in premature differentiation of mesenchymal cells and reduced vasculogenesis of the splenic primordium. Pharmacological inhibition of RA signaling in Tlx1-deficient animals partially rescued the spleen defect. Finally, spleen growth was impaired in mice lacking either cytochrome 26B1 (Cyp26b1), which results in excess RA, or retinol dehydrogenase 10 (Rdh10), which results in RA deficiency. Together, these findings establish TLX1 as a critical regulator of RA metabolism and provide mechanistic insight into the molecular determinants of human congenital asplenia. We performed ChIP-sequencing for Hox11 rep1 and rep2 in eSMC untreated cells.
Project description:The molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1. Herein, we have shown that TLX1-dependent regulation of retinoic acid (RA) metabolism is critical for spleen organogenesis. In a murine model, loss of Tlx1 during formation of the splenic anlage increased RA signaling by regulating several genes involved in RA metabolism. Uncontrolled RA activity resulted in premature differentiation of mesenchymal cells and reduced vasculogenesis of the splenic primordium. Pharmacological inhibition of RA signaling in Tlx1-deficient animals partially rescued the spleen defect. Finally, spleen growth was impaired in mice lacking either cytochrome 26B1 (Cyp26b1), which results in excess RA, or retinol dehydrogenase 10 (Rdh10), which results in RA deficiency. Together, these findings establish TLX1 as a critical regulator of RA metabolism and provide mechanistic insight into the molecular determinants of human congenital asplenia.
Project description:Dietary vitamin A is metabolized into bioactive retinoic acid in vivo and regulates the development of many embryonic tissues. Retinoic acid signaling is active in the oral ectoderm-derived tissues of the neuroendocrine system, but its role there has not yet been fully explored. We show here that retinoic acid signaling is active during pituitary organogenesis and dependent on the pituitary transcription factor Prop1. Prop1-mutant mice show reduced expression of the aldehyde dehydrogenase gene Aldh1a2, which metabolizes the vitamin A-intermediate retinaldehyde into retinoic acid. In order to elucidate the specific function of RA signaling during neuroendocrine development, we studied a conditional deletion of Aldh1a2 and a dominant-negative mouse model of inhibited retinoic acid signaling during pituitary organogenesis. These models partially phenocopy Prop1-mutant mice by exhibiting embryonic pituitary dysmorphology and reduced hormone expression, especially of thyroid-stimulating hormone. These findings establish the critical role of retinoic acid in embryonic pituitary stem cell progression to differentiated hormone cells and raise the question of gene-by-environment interactions as contributors to pituitary development and disease.
Project description:During development, the meninges act as a regulator of neocortical development by secreting ligands that act on neural cells to regulate neurogenesis and neuronal migration. Meninges-derived retinoic acid (RA) promotes neocortical progenitor cell cycle exit however the underlying mechanism is unknown. Here, we use Foxc1-mutant embryos that lack meninges-derived ligands, spatial transcriptomics, and profiling of retinoic-acid receptor-a (RARa) DNA binding to identify the neurogenic transcriptional mechanisms of RA signaling in cortical neural progenitors. We determined that meningeal-derived RA controls neurogenesis by suppressing self-renewal pathways Notch signaling and the transcription factor Sox2. We show that RARα binds in the Sox2ot promoter, a long non-coding RNA that regulates Sox2 expression, and RA promotes Sox2ot expression in neocortical progenitors. Our findings elucidate a previously unknown mechanism of howmeningeal RA coordinates neocortical development and insight into how defects in meningeal develop can cause neurodevelopmental disorders.
Project description:During development, the meninges act as a regulator of neocortical development by secreting ligands that act on neural cells to regulate neurogenesis and neuronal migration. Meninges-derived retinoic acid (RA) promotes neocortical progenitor cell cycle exit however the underlying mechanism is unknown. Here, we use Foxc1-mutant embryos that lack meninges-derived ligands, spatial transcriptomics, and profiling of retinoic-acid receptor-a (RARa) DNA binding to identify the neurogenic transcriptional mechanisms of RA signaling in cortical neural progenitors. We determined that meningeal-derived RA controls neurogenesis by suppressing self-renewal pathways Notch signaling and the transcription factor Sox2. We show that RARα binds in the Sox2ot promoter, a long non-coding RNA that regulates Sox2 expression, and RA promotes Sox2ot expression in neocortical progenitors. Our findings elucidate a previously unknown mechanism of howmeningeal RA coordinates neocortical development and insight into how defects in meningeal develop can cause neurodevelopmental disorders.