Project description:We propose a novel approach for FPOP data analysis, utilizing DIA data. The HbHp protein complex was analyzed by FPOP and measured on timsToF SCP in DIA, DDA and MS modes. The IDs of modified peptides were quantified for each acquisition mode and the extent of modification was calculated on the level of peptides. The reproducibility was evaluated by coefficients of variation.This work was mainly financially supported by the Czech Science Foundation (22-27695S), the Technology Agency of the Czech Republic (ODEEP-EU TH86010001), the Ministry of Education, Youth and Sports of the Czech Republic grant PHOTOMACHINES - Photosynthetic cell redesign for high yields of therapeutic peptides (CZ.02.01.01/00/22_008/0004624) and the Academy of Sciences of the Czech Republic (RVO: 61388971).
Project description:Genotype data from 55 Fulani individuals from Ziniare, Burkina Faso and 7 Czechs & Slovaks collected in Prague, Czech Republic The data was typed in Illumina Omni2.5-Octo BeadChip.
Project description:Generation of a new library of targeted mass spectrometry assays for accurate protein quantification in malignant and normal kidney tissue. Aliquots of primary tumor tissue lysates from 86 patients with initially localized renal cell carcinoma (RCC), 75 patients with metastatic RCC treated with sunitinib or pazopanib in the first line and 17 adjacent normal tissues treated at Masaryk Memorial Cancer Institute (MMCI) in Brno, Czech Republic, or University Hospital Pilsen (UHP), Czech Republic, were used to generate the spectral library. Two previously published datasets (dataset A and B) and two newly generated RCC datasets (dataset C and D) were analyzed using the newly generated library showing increased number of quantified peptides and proteins, depending on the size of the library and LC-MS/MS instrumentation. This PRIDE project also includes quantitative analysis results for all four datasets and raw files for dataset C and D. Dataset A is characterized in DOI: 10.1038/nm.3807. It consists of 18 samples from 9 RCC patients involving one cancer and non-cancerous sample per patient. Dataset B is characterized in DOI: 10.3390/biomedicines9091145. It consists of 16 tumor samples and 16 adjacent normal tissues from 16 mRCC patients treated at Masaryk Memorial Cancer Institute (MMCI) in Brno, Czech Republic. Dataset C involves only tumor tissues from dataset B. Half of them responded to sunitinib treatment in the first line three months after treatment initiation and half did not. Dataset D involves 16 RCC patients treated at University Hospital Pilsen (UHP), Czech Republic. All were localized at the time of initial diagnosis, half of the tumors developed distant metastasis in five years after the diagnosis.
Project description:Main objective is to improve colorectal cancer (CRC) screening programme in the Czech Republic and decrease the disease incidence and mortality. The secondary aim is to verify the effectiveness of incorporation of the new minimally invasive device in the prevention programme.
Project description:Despite high vaccination coverage, pertussis is on the rise in many countries including Czech Republic. To better understand B. pertussis resurgence we compared the changes in genome structures between Czech vaccine and circulating strains and subsequently, we determined how these changes translated into global transcriptomic and proteomic profiles. The whole-genome sequencing revealed that both historical and recent isolates of B. pertussis display substantial variation in genome organization and cluster separately. The RNA-seq and LC-MS/MS analyses indicate that these variations translated into discretely separated transcriptomic and proteomic profiles. Compared to vaccine strains, recent isolates displayed increased expression of flagellar genes and decreased expression of polysaccharide capsule operon. Czech strains (Bp46, K10, Bp155, Bp318 and Bp6242)exhibited increased expression of T3SS and sulphate metabolism genes when compared to Tohama I. In spite of 50 years of vaccination the Czech vaccine strains (VS67, VS393 and VS401) differ from recent isolates to a lesser extent than from another vaccine strain Tohama I.
Project description:BackgroundUsing a combination of pyrosequencing and conventional Sanger sequencing, the complete genome sequence of the recently described novel Brucella species, Brucella microti, was determined. B. microti is a member of the genus Brucella within the Alphaproteobacteria, which consists of medically important highly pathogenic facultative intracellular bacteria. In contrast to all other Brucella species, B. microti is a fast growing and biochemically very active microorganism with a phenotype more similar to that of Ochrobactrum, a facultative human pathogen. The atypical phenotype of B. microti prompted us to look for genomic differences compared to other Brucella species and to look for similarities with Ochrobactrum.ResultsThe genome is composed of two circular chromosomes of 2,117,050 and 1,220,319 base pairs. Unexpectedly, we found that the genome sequence of B. microti is almost identical to that of Brucella suis 1330 with an overall sequence identity of 99.84% in aligned regions. The most significant structural difference between the two genomes is a bacteriophage-related 11,742 base pairs insert only present in B. microti. However, this insert is unlikely to have any phenotypical consequence. Only four protein coding genes are shared between B. microti and Ochrobactrum anthropi but impaired in other sequenced Brucella. The most noticeable difference between B. microti and other Brucella species was found in the sequence of the 23S ribosomal RNA gene. This unusual variation could have pleiotropic effects and explain the fast growth of B. microti.ConclusionContrary to expectations from the phenotypic analysis, the genome sequence of B. microti is highly similar to that of known Brucella species, and is remotely related to the one of O. anthropi. How the few differences in gene content between B. microti and B. suis 1330 could result in vastly different phenotypes remains to be elucidated. This unexpected finding will complicate the task of identifying virulence determinants in the Brucella genus. The genome sequence of B. microti will serve as a model for differential expression analysis and complementation studies. Our results also raise some concerns about the importance given to phenotypical traits in the definition of bacterial species.