Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Purpose: The goals of this study are to compare microRNA profiling in different adipose tissues and muscles using microRNA arrays. Methods: Tissue microRNA profiles of 2-3-month old mice were generated by using miRCURY™ LNA microRNA Array. The samples were hybridized on a hybridization station following the scheme you outlined in the sample submission. Scanning is performed with the Axon GenePix 4000B microarray scanner. GenePix pro V6.0 is used to read the raw intensity of the image. The intensity of green signal is calculated after background subtraction and four Replicated spots of each probe on the same slide have been calculated the median. We use Median Normalization Method to obtain “Normalized Data”, Normalized Data = (Foreground-Background) / median, the median is 50 percent quantile of microRNA intensity which is larger than 50 in all samples after background correction. Results and conclusion: The miRNA expression profiling was completed on our samples. The profiling identified a subset of the total number of miRNAs analyzed by the miRCURY™ array that are differentially expressed in brown adipose tissue, inguinal adipose tissue, epidydimal adipose tissue, gastrocnemius muscle, and soleus muscle.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:We used microarrays to detail the gene expression profile during WAT -beige transition by treatment of beta adrenergic receptor agonist . Stromal vascular fractions (SVF) from mice (n = 3/group) that received vehicle or beta3 adrenergic receptor agonist, CL, treatment were served for RNA extraction and hybridization on Affymetrix microarrays. We are trying to find out angiogenic factors genes dynamics during white adipose tissues (WAT) - beige transition.
Project description:Purpose: The goals of this study are to compare microRNA profiling in different adipose tissues and muscles using microRNA arrays. Methods: Tissue microRNA profiles of 2-3-month old mice were generated by using miRCURY⢠LNA microRNA Array. The samples were hybridized on a hybridization station following the scheme you outlined in the sample submission. Scanning is performed with the Axon GenePix 4000B microarray scanner. GenePix pro V6.0 is used to read the raw intensity of the image. The intensity of green signal is calculated after background subtraction and four Replicated spots of each probe on the same slide have been calculated the median. We use Median Normalization Method to obtain âNormalized Dataâ, Normalized Data = (Foreground-Background) Â/ Âmedian, the median is 50 percent quantile of microRNA intensity which is larger than 50 in all samples after background correction. Results and conclusion: The miRNA expression profiling was completed on our samples. The profiling identified a subset of the total number of miRNAs analyzed by the miRCURY⢠array that are differentially expressed in brown adipose tissue, inguinal adipose tissue, epidydimal adipose tissue, gastrocnemius muscle, and soleus muscle. Tissue microRNA profiles of 2-3-month old mice were generated by microarray, using miRCURY⢠LNA Array.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.