Project description:Phosphate starvation/sufficient rice seedling, root or shoot Pi-starvation or Pi-sufficient stresses responsible rice genes, including previously unannotated genes were identified by Illumina mRNA-seq technology. 53 million reads from Pi-starvation or Pi-sufficient root or shoot tissues were uniquely mapped to the rice genome, and these included 40574 RAP3 transcripts in root and 39748 RAP3 transcripts in shoot. We compared our mRNA-seq expression data with that from Rice 44K oligomicroarray, and about 95.5% (root) and 95.4% (shoot) transcripts supported by the array were confirmed expression both by the array and by mRNA-seq, Moreover, 11888 (root) and 11098 (shoot) RAP genes which were not supported by array, were evidenced expression with mRNA-seq. Furthermore, we discovered 8590 (root) and 8193 (shoot) previously unannotated transcripts upon Pi-starvation and/or Pi-sufficient.
Project description:Treatment of rice roots with glutamate (Glu) induces systemic disease resistance against rice blast in leaves. To analyze the effect of Glu on the transcriptome of rice, rice roots were treated with Glu solution, and then fourth leaves were harvested and analyzed by Agilent rice microarray.
Project description:In this study, we investigated novel rice genes that are expressed in aleurone cells by RNA-seq. RNA-seq was performed on four samples: a control sample, and samples treated with ABA, GA, and a mixture of the two hormones.
Project description:Transcriptional profiling of MIT knockdown plants. MIT is a mitochondrial Fe transporter essential for rice growth and development. The goal was to determine the effects of MIT on global rice gene expression.