Project description:Triple-negative breast cancer is a highly aggressive tumor subtype that lacks effective therapeutic targets. Here, we show that ELK3 is overexpressed in a subset of breast cancers, in particular basal-like and normal-like/claudin-low cell lines. Suppression of ELK3 in MDA-MB-231 cells led to transdifferentiation from an invasive mesenchymal phenotype to a non-invasive epithelial phenotype both in vitro and in vivo. Suppression of ELK3 results in the extensive changes in genome expression profiles. Among these, GATA3, a master suppressor of metastasis, was epigenetically activated and we found that suppression of GATA3 led to the restoration of migration and invasion. These results suggest that the ELK3-GATA3 axis is a major pathway that promotes metastasis of MDA-MB-231 cells. Retrovirus expressing shRNA of ELK3 was transduced into MDA-MB-231 cell line and stable cell line of which ELK3 is suppressed more than 50% was selected by the drug selection (Puromycin).
Project description:Transcriptional profiling of human breast cancer cell line LM2, a subline of MDA-MB-231 highly metastatic to lung when injected to nude mice, to identify the genes that are regulated after the metastasis gene metadherin is knocked down. Keywords: Genetic modification
Project description:Triple-negative breast cancer is a highly aggressive tumor subtype that lacks effective therapeutic targets. Here, we show that ELK3 is overexpressed in a subset of breast cancers, in particular basal-like and normal-like/claudin-low cell lines. Suppression of ELK3 in MDA-MB-231 cells led to transdifferentiation from an invasive mesenchymal phenotype to a non-invasive epithelial phenotype both in vitro and in vivo. Suppression of ELK3 results in the extensive changes in genome expression profiles. Among these, GATA3, a master suppressor of metastasis, was epigenetically activated and we found that suppression of GATA3 led to the restoration of migration and invasion. These results suggest that the ELK3-GATA3 axis is a major pathway that promotes metastasis of MDA-MB-231 cells.
Project description:To identify the downstream target genes of PUS1 on breast cancer cells, we established MDA-MB-231 cell lines in which PUS1 has been knocked down by shRNA. We then performed gene expression profiling analysis using data obtained from RNA-seq of PUS1 knockdownMDA-MB-231 cells as well as negative control shRNA group
Project description:To investigate the function of SNHG14 in breast cancer, we established MDA-MB-231 cell lines in which this gene has been knocked down by siRNA.
Project description:We report the gene expression patterns in MDA-MB-231 (a line selected for low metastatic ability), MDA-MB-231-1833 (its bone-tropic metastatic derivative line), MDA-MB-231p27CK-DD (a phosphomimetic cell line), MDA-MB-231-1833shp27 (p27 knockdown cell line), MDA-MB-231-1833PF1502 (PI3K inhibitor treatment). It shows that the gene expression pattern are regulated in a p27 phosphorylation-dependent manner.
Project description:To investigate the function NatD in the regulation of breast cancer progression, we established MDA-MB-231 cell lines in which each target gene has been knocked down by CRISPR.