Project description:Aegista chejuensis and Aegista quelpartensis (Family-Bradybaenidae) are endemic to Korea, and are considered vulnerable due to declines in their population. The limited genetic resources for these species restricts the ability to prioritize conservation efforts. We sequenced the transcriptomes of these species using Illumina paired-end technology. Approximately 257 and 240 million reads were obtained and assembled into 198,531 and 230,497 unigenes for A. chejuensis and A. quelpartensis, respectively. The average and N50 unigene lengths were 735.4 and 1073 bp, respectively, for A. chejuensis, and 705.6 and 1001 bp, respectively, for A. quelpartensis. In total, 68,484 (34.5%) and 77,745 (33.73%) unigenes for A. chejuensis and A. quelpartensis, respectively, were annotated to databases. Gene Ontology terms were assigned to 23,778 (11.98%) and 26,396 (11.45) unigenes, for A. chejuensis and A. quelpartensis, respectively, while 5050 and 5838 unigenes were mapped to 117 and 124 pathways in the Kyoto Encyclopedia of Genes and Genomes database. In addition, we identified and annotated 9542 and 10,395 putative simple sequence repeats (SSRs) in unigenes from A. chejuensis and A. quelpartensis, respectively. We designed a list of PCR primers flanking the putative SSR regions. These microsatellites may be utilized for future phylogenetics and conservation initiatives.
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.