Project description:Pulmonary immunization with an outer membrane vesicle pertussis vaccine led to improved protection and induction of a completely distinct immune response compared to subcutaneous administration. These adaptive responses were linked to early local and systemic signatures on the transcriptome level.
Project description:Pulmonary immunization with an outer membrane vesicle pertussis vaccine led to improved protection and induction of a completely distinct immune response compared to subcutaneous administration. These adaptive responses were linked to early local and systemic signatures on the transcriptome level.
Project description:Differential gene expression in mouse whole blood and lymph nodes at 4 different timepoints following administration of different vaccine/adjuvants combinations
Project description:Bordetella pertussis, the causative agent of whooping cough, produces a microcapsule at its surface but its role in pertussis pathogenesis remained to be investigated.Absence of KpsT, a membrane-associated protein involved in the polysaccharide transport resulted in the down-modulation of a large number of virulence genes which correlated with strong attenuation in vivo.
Project description:Gene expression analysis in lymph nodes and site of injection (intradermal) after vaccination with adenovirus (Ad), modified vaccinia Ankara (MVA) or a mixed formulation of Ad+MVA. The hypothesis tested in the present study was that co-administration of two viral vectors induce a differential gene expression in the site of vaccination (dermis) and the draining lymph nodes that ultimately influences the protective ability of a vaccine against pre-erythrocytic malaria. Total RNA was isolated from the vaccination site (dermis) and lymph nodes after vaccination with adenovirus, MVA or Ad+MVA mixed co-administration after 6h and 24h (ear biopsies) and 9h, 24h and 72h for lymph nodes. Differential gene expression was assessed between vaccinated and non-immunized mice. Four ear biopsy samples did not pass quality control, and are not included in this submission.
Project description:Pertussis is a highly contagious, acute respiratory disease in humans caused by the Gram-negative pathogen Bordetella pertussis. Pertussis has resurged in the face of intensive vaccination and this has coincided with the emergence of strains carrying a particular allele for the pertussis toxin promoter, ptxP3, which is associated with higher levels of pertussis toxin (Ptx) production. Within 10 to 20 years, ptxP3 strains have nearly completely replaced the previously dominant ptxP1 strains resulting in a worldwide selective sweep. In order to identify B. pertussis genes associated with the selective sweep, we compared the expression of genes in ptxP1 and ptxP3 strains that are under control of the Bordetella master virulence regulatory locus (bvgASR). The BvgAS proteins comprise a two component sensory transduction system which is regulated by temperature, nicotinic acid and sulfate. By increasing the sulfate concentration, it is possible to change the phase of B. pertussis from virulent to avirulent. Until recently, the only distinctive phenotype of ptxP3 strains was a higher Ptx production. Here we identify additional phenotypic differences between ptxP1 and ptxP3 strains which may have contributed to its global spread by comparing global transcriptional responses under sulfate-modulating conditions. We show that ptxP3 strains are less sensitive to sulfate-mediated gene suppression, resulting in an increased production of the vaccine antigens pertactin (Prn) and Ptx and a number of other virulence genes, including a type III secretion toxin, Vag8, a protein involved in complement resistance, and lpxE involved in lipid A modification. Furthermore, enhanced expression of the vaccine antigens Ptx and Prn by ptxP3 strains was confirmed at the protein level. Identification of genes differentially expressed between ptxP1 and ptxP3 strains may elucidate how B. pertussis has adapted to vaccination and allow the improvement of pertussis vaccines by identifying novel vaccine candidates.