Project description:In recent years, there has been an increased interest in the research and development of sustainable alternatives to fossil fuels. Using photosynthetic microorganisms to produce such alternatives is advantageous, since they can achieve direct conversion of carbon dioxide from the atmosphere into the desired product, using sunlight as the energy source. Squalene is a naturally occurring 30-carbon isoprenoid, which has commercial use in cosmetics and in vaccines. If it could be produced sustainably on a large scale, it could also be used instead of petroleum as a raw material for fuels and as feedstock for the chemical industry. The unicellular cyanobacterium Synechocystis PCC 6803 possesses a gene, slr2089, predicted to encode squalene hopene cyclase (Shc), an enzyme converting squalene into hopene, the substrate for forming hopanoids. Through inactivation of slr2089 (shc), we explored the possibility to produce squalene using cyanobacteria. The inactivation led to accumulation of squalene, to a level over 70 times higher than in wild type cells, reaching 0.67 mg OD750(-1) L(-1). We did not observe any significant growth deficiency in the Δshc strain compared to the wild type Synechocystis, even at high light conditions, suggesting that the observed squalene accumulation was not detrimental to growth, and that formation of hopene by Shc is not crucial for growth under normal conditions, nor for high-light stress tolerance. Effects of different light intensities and growth stages on squalene accumulation in the Δshc strain were investigated. We also identified a gene, sll0513, as a putative squalene synthase in Synechocystis, and verified its function by inactivation. In this work, we show that it is possible to use the cyanobacterium Synechocystis to generate squalene, a hydrocarbon of commercial interest and a potential biofuel. We also report the first identification of a squalene hopene cyclase, and the second identification of squalene synthase, in cyanobacteria.
Project description:We designed and constructed a controllable inducing lysis system in Synechocystis sp. PCC 6803 to facilitate extracting lipids for biofuel production. Several bacteriophage-derived lysis genes were integrated into the genome and placed downstream of a nickel-inducible signal transduction system. We applied 3 strategies: (i) directly using the phage lysis cassette, (ii) constitutively expressing endolysin genes while restricting holin genes, and (iii) combining lysis genes from different phages. Significant autolysis was induced in the Synechocystis sp. PCC 6803 cells with this system by the addition of NiSO(4). Our inducible cyanobacterial lysing system eliminates the need for mechanical or chemical cell breakage and could facilitate recovery of biofuel from cyanobacteria.
Project description:BackgroundMetabolic engineering and synthetic biology of cyanobacteria offer a promising sustainable alternative approach for fossil-based ethylene production, by using sunlight via oxygenic photosynthesis, to convert carbon dioxide directly into ethylene. Towards this, both well-studied cyanobacteria, i.e., Synechocystis sp PCC 6803 and Synechococcus elongatus PCC 7942, have been engineered to produce ethylene by introducing the ethylene-forming enzyme (Efe) from Pseudomonas syringae pv. phaseolicola PK2 (the Kudzu strain), which catalyzes the conversion of the ubiquitous tricarboxylic acid cycle intermediate 2-oxoglutarate into ethylene.ResultsThis study focuses on Synechocystis sp PCC 6803 and shows stable ethylene production through the integration of a codon-optimized version of the efe gene under control of the Ptrc promoter and the core Shine-Dalgarno sequence (5'-AGGAGG-3') as the ribosome-binding site (RBS), at the slr0168 neutral site. We have increased ethylene production twofold by RBS screening and further investigated improving ethylene production from a single gene copy of efe, using multiple tandem promoters and by putting our best construct on an RSF1010-based broad-host-self-replicating plasmid, which has a higher copy number than the genome. Moreover, to raise the intracellular amounts of the key Efe substrate, 2-oxoglutarate, from which ethylene is formed, we constructed a glycogen-synthesis knockout mutant (ΔglgC) and introduced the ethylene biosynthetic pathway in it. Under nitrogen limiting conditions, the glycogen knockout strain has increased intracellular 2-oxoglutarate levels; however, surprisingly, ethylene production was lower in this strain than in the wild-type background.ConclusionMaking use of different RBS sequences, production of ethylene ranging over a 20-fold difference has been achieved. However, a further increase of production through multiple tandem promoters and a broad-host plasmid was not achieved speculating that the transcription strength and the gene copy number are not the limiting factors in our system.
Project description:The biosynthesis pathway of carotenoids in cyanobacteria is partly described. However, the subcellular localization of individual steps is so far unknown. Carotenoid analysis of different membrane subfractions in Synechocystis sp. PCC6803 shows that "light" plasma membranes have a high carotenoid/protein ratio, when compared to "heavier" plasma membranes or thylakoids. The localization of CrtQ and CrtO, two well-defined carotenoid synthesis pathway enzymes in Synechocystis, was studied by epitope tagging and western blots. Both enzymes are locally more abundant in plasma membranes than in thylakoids, implying that the plasma membrane has higher synthesis rates of ?-carotene precursor molecules and echinenone.
Project description:BackgroundThere are an increasing number of studies regarding genetic manipulation of cyanobacteria to produce commercially interesting compounds. The majority of these works study the expression and optimization of a selected heterologous pathway, largely ignoring the wholeness and complexity of cellular metabolism. Regulation and response mechanisms are largely unknown, and even the metabolic pathways themselves are not fully elucidated. This poses a clear limitation in exploiting the rich biosynthetic potential of cyanobacteria.ResultsIn this work, we focused on the production of two different compounds, the cyanogenic glucoside dhurrin and the diterpenoid 13R-manoyl oxide in Synechocystis PCC 6803. We used genome-scale metabolic modelling to study fluxes in individual reactions and pathways, and we determined the concentrations of key metabolites, such as amino acids, carotenoids, and chlorophylls. This allowed us to identify metabolic crosstalk between the native and the introduced metabolic pathways. Most results and simulations highlight the metabolic robustness of cyanobacteria, suggesting that the host organism tends to keep metabolic fluxes and metabolite concentrations steady, counteracting the effects of the heterologous pathway. However, the amino acid concentrations of the dhurrin-producing strain show an unexpected profile, where the perturbation levels were high in seemingly unrelated metabolites.ConclusionsThere is a wealth of information that can be derived by combining targeted metabolite identification and computer modelling as a frame of understanding. Here we present an example of how strain engineering approaches can be coupled to 'traditional' metabolic engineering with systems biology, resulting in novel and more efficient manipulation strategies.
Project description:In the absence of an exogenous ligand, the hemoglobins from the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 coordinate the heme group with two axial histidines (His46 and His70). These globins also form a covalent linkage between the heme 2-vinyl substituent and His117. The in vitro mechanism of heme attachment to His117 was examined with a combination of site-directed mutagenesis, NMR spectroscopy, and optical spectroscopy. The results supported an electrophilic addition with vinyl protonation being the rate-determining step. Replacement of His117 with a cysteine demonstrated that the reaction could occur with an alternative nucleophile. His46 (distal histidine) was implicated in the specificity of the reaction for the 2-vinyl group as well as protection of the protein from oxidative damage caused by exposure to exogenous H(2)O(2).
Project description:Synechocystis 6803 cells was grown photoautotrophically at 32 °C buffered in BG-11 and bubbled with 3% CO2. A relatively mild Ci stress was applied by switching the aeration from 3% CO2 to air alone. After incubation under designated conditions, a 100-ml aliquot of culture was immediately combined with an equal volume of ice-cold mixture of phenol and ethanol (1:10, w/v) in an ice bath. The resultant cells were collected by centrifugation at 1000 x g for 10 min at 4 °C. Total RNA was isolated with RNeasy Midi Kit (Qiagen, Valencia, CA) and further treated with the DNA-free kit (Ambion, Austin, TX). Fluorescently labeled cDNA was produced via a two-step indirect procedure involving cDNA synthesis from 16 µg of total RNA in a reverse transcriptase reaction incorporating aminoallyl-modified deoxynucleotide, followed by the second step involving chemical coupling of fluorescent dye to the introduced amino moieties of the synthesized cDNA. Labeled cDNA were adjusted to 14.75 µl, and the remainder of the hybridization components containing 2.5 µl of 10 µg µl-1 salmon sperm DNA, 8.75 µl of 20x SSC, 0.25 µl of 10% SDS, and 8.75 µl of formamide were added. The mixture was then heated for 2 min at 99 °C and maintained at 42 °C until hybridization. Hybridizations were preformed in a static incubator at 42 °C for 12-16 h then washed by placing in a 250-ml solution of 2x SSC and 0.1% SDS at 42 °C for 5 min with gentle agitation provided by rotation of a magnetic stir bar. The slide was transferred quickly to a 250-ml solution of 0.1x SSC and 0.1% SDS, incubated for 10 min at room temperature with gentle agitation, and washed five additional times in 0.1x SSC for 1 min at room temperature. Hybridization signals from the microarray were quantified using GenePix Pro 4.1 (Axon Instruments, Union City, CA). The quality control procedures were conducted in the image analysis software, and then data were saved to Acuity 3.1 (Axon Instruments). Keywords: time-course
Project description:In cyanobacteria, increasing growth temperature decreases lipid unsaturation and the ratio of monomer/trimer photosystem I (PSI) complexes. In the present study we applied Fourier-transform infrared (FTIR) spectroscopy and lipidomic analysis to study the effects of PSI monomer/oligomer ratio on the physical properties and lipid composition of thylakoids. To enhance the presence of monomeric PSI, a Synechocystis sp. PCC6803/?psaL mutant strain (PsaL) was used which, unlike both trimeric and monomeric PSI-containing wild type (WT) cells, contain only the monomeric form. The protein-to-lipid ratio remained unchanged in the mutant but, due to an increase in the lipid disorder in its thylakoids, the gel to liquid-crystalline phase transition temperature (Tm) is lower than in the WT. In thylakoid membranes of the mutant, digalactosyldiacylglycerol (DGDG), the most abundant bilayer-forming lipid is accumulated, whereas those in the WT contain more monogalactosyldiacylglycerol (MGDG), the only non-bilayer-forming lipid in cyanobacteria. In PsaL cells, the unsaturation level of sulphoquinovosyldiacylglycerol (SQDG), a regulatory anionic lipid, has increased. It seems that merely a change in the oligomerization level of a membrane protein complex (PSI), and thus the altered protein-lipid interface, can affect the lipid composition and, in addition, the whole dynamics of the membrane. Singular value decomposition (SVD) analysis has shown that in PsaL thylakoidal protein-lipid interactions are less stable than in the WT, and proteins start losing their native secondary structure at much milder lipid packing perturbations. Conclusions drawn from this system should be generally applicable for protein-lipid interactions in biological membranes.
Project description:RNA-seq and especially differential RNA-seq-type transcriptomic analyses (dRNA-seq) are powerful analytical tools, as they not only provide insights into gene expression changes but also provide detailed information about all promoters active at a given moment, effectively giving a deep insight into the transcriptional landscape. Synechocystis sp. PCC 6803 (Synechocystis 6803) is a unicellular model cyanobacterium that is widely used in research fields from ecology, photophysiology to systems biology, modelling and biotechnology. Here, we analysed the response of the Synechocystis 6803 primary transcriptome to different, environmentally relevant stimuli. We established genome-wide maps of the transcriptional start sites active under 10 different conditions relevant for photosynthetic growth and identified 4,091 transcriptional units, which provide information about operons, 5' and 3' untranslated regions (UTRs). Based on a unique expression factor, we describe regulons and relevant promoter sequences at single-nucleotide resolution. Finally, we report several sRNAs with an intriguing expression pattern and therefore likely function, specific for carbon depletion (CsiR1), nitrogen depletion (NsiR4), phosphate depletion (PsiR1), iron stress (IsaR1) or photosynthesis (PsrR1). This dataset is accompanied by comprehensive information providing extensive visualization and data access to allow an easy-to-use approach for the design of experiments, the incorporation into modelling studies of the regulatory system and for comparative analyses.
Project description:BACKGROUND: The unicellular cyanobacterium Synechocystis sp. PCC 6803 is a model microbe for studying biochemistry, genetics and molecular biology of photobiological processes. Importance of this bacterium in basic and applied research calls for a systematic, genome-wide description of its transcriptional regulatory capacity. Characteristic transcriptional responses to changes in the growth environment are expected to provide a scaffold for describing the Synechocystis transcriptional regulatory network as well as efficient means for functional annotation of genes in the genome. RESULTS: We designed, validated and used Synechocystis genome-wide oligonucleotide (70-mer) microarray (representing 96.7% of all chromosomal ORFs annotated at the time of the beginning of this project) to study transcriptional activity of the cyanobacterial genome in response to sulfur (S) starvation. The microarray data were verified by quantitative RT-PCR. We made five main observations: 1) Transcriptional changes upon sulfate starvation were relatively moderate, but significant and consistent with growth kinetics; 2) S acquisition genes encoding for a high-affinity sulfate transporter were significantly induced, while decreased transcription of genes for phycobilisome, photosystems I and II, cytochrome b6/f, and ATP synthase indicated reduced light-harvesting and photosynthetic activity; 3) S starvation elicited transcriptional responses associated with general growth arrest and stress; 4) A large number of genes regulated by S availability encode hypothetical proteins or proteins of unknown function; 5) Hydrogenase structural and maturation accessory genes were not identified as differentially expressed, even though increased hydrogen evolution was observed. CONCLUSION: The expression profiles recorded by using this oligonucleotide-based microarray platform revealed that during transition from the condition of plentiful S to S starvation, Synechocystis undergoes coordinated transcriptional changes, including changes in gene expression whose products are involved in sensing nutrient limitations and tuning bacterial metabolism. The transcriptional profile of the nutrient starvation was dominated by a decrease in abundances of many transcripts. However, these changes were unlikely due to the across-the-board, non-specific shut down of transcription in a condition of growth arrest. Down-regulation of transcripts encoding proteins whose function depends on a cellular S status indicated that the observed repression has a specific regulatory component. The repression of certain S-related genes was paralleled by activation of genes involved in internal and external S scavenging.