Project description:Whole-genome sequencing is an important way to understand the genetic information, gene function, biological characteristics, and living mechanisms of organisms. There is no difficulty to have mega-level genomes sequenced at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. The shotgun sequencing method failed to dissect this genome. After insisting for 10 years and going over 3 generations of sequencing techniques, we successfully dissected the PaP1 genome with 91,715 bp in length. Single-molecule sequencing revealed that this genome contains lots of modified bases, including 51 N6-methyladenines (m6A) and 152 N4-methylcytosines (m4C). At the same time, further investigations revealed a novel immune mechanism of bacteria, by which the host bacteria can recognize and repel the modified bases containing inserts in large scale, and this led to the failure of the shotgun method in PaP1 genome sequencing. Strategy of resolving this problem is use of non-library dependent sequencing techniques or use of the nfi- mutant of E. coli DH5M-NM-1 as the host bacteria to construct the shotgun library. In conclusion, we unlock the mystery of phage PaP1 genome hard to be sequenced, and discover a new mechanism of bacterial immunity in present study. Methylation profiling of Pseudomonas aeruginosa phage PaP1 using kinetic data generated by single-molecule, real-time (SMRT) sequencing on the PacBio RS.
Project description:Gut-microbiota membership is associated with diverse neuropsychological-diseases, including substance use disorders (SUDs). Unravelling mechanistic interactions between gut microbes and the host during psychostimulant use remains challenging. Here we show that cocaine exposure increases intestinal levels of norepinephrine, sensed through the bacterial adrenergic receptor QseC, promoting intestinal colonization of g-Proteobacteria. Gut colonization by g-Proteobacteria depletes the neuroactive metabolite glycine (used as a nitrogen source) both in the gut and cerebrospinal fluid, enhancing host cocaine-induced behaviors. Glycine repletion reversed this response, and intestinal colonization by g-Proteobacteria unable to uptake glycine did not alter the host response to cocaine. Transcriptomic profiling indicates a role of g-Proteobacteria modulated glycine levels in cocaine induced transcriptional plasticity in the nucleus accumbens through the glutamatergic transmission. Altogether, we introduce a mechanism by which intestinal bacteria alter the host’s brain responses to cocaine that could be exploited to modulate reward-related brain circuits that contribute to SUDs.
Project description:A tripartite interaction between patescibacterial epibiont Strigamonas methylophilicida, methylotrophic proteobacteria, and a jumbo phage
Project description:Large-genome bacteriophages (jumbo phages) of the Chimalliviriadae family assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and CRISPR/Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here we identify a conserved phage nuclear shell-associated protein that we term chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA. Targeted knockdown of ChmC using mRNA-targeting Cas13d halts infections at an early stage. Taken together, our data suggest that the conserved ChmC protein acts as a chaperone for phage mRNAs, potentially stabilizing these mRNAs and driving their translocation through the nuclear shell to promote translation and infection progression.