Project description:IL2 signals are transmitted through JAK1 and JAK3, but the transcriptomic consequences of each to the overall response is unclear. Here we analyzed the relative contribution of JAK1 and JAK3 to the NK cell IL2 response in vitro using titrated doses of isoform specific JAK inhibitors. Blockade of JAK1 and JAK3 have unequal effects on IL2-induced transcripts at pharmacologically relevant doses. Splenic NK cells were isolated by negative selection from 6wk old male C57BL/6 mice. These were cultured with IL2 (250U/ml) in the presence or absence of JAK1/3 inhibitors for 8hrs in vitro. Cells were then transferred directly into TriZol. RNA was prepared in Trizol for gene expression profiling by Affymetrix Mouse Gene 1.0 ST Arrays.
Project description:IL2 signals are transmitted through JAK1 and JAK3, but the transcriptomic consequences of each to the overall response is unclear. Here we analyzed the relative contribution of JAK1 and JAK3 to the NK cell IL2 response in vitro using titrated doses of isoform specific JAK inhibitors. Blockade of JAK1 and JAK3 have unequal effects on IL2-induced transcripts at pharmacologically relevant doses.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Transcriptional profiling of NKAES-derived NK cells after 7 days of culture compared to primary human NK cells and NK cells stimulated by low or high dose IL2 after 7 days of culture. Four-condition experiment, primary NK cells vs. NKAES-derived NK cells after 7 days of culture vs. NK cells stimulated by low/high dose IL2 after 7 days of culture. Biological replicates: 5 control, 5 NKAES-derived NK cells, 3 NK cells stimulated by low dose IL2, 3 NK cells stimulated by high dose IL2 independently grown and harvested. One replicate per array.
Project description:Natural Killer (NK) cells are primary effectors of innate immunity directed against transformed cells. In response, tumor cells have developed mechanisms to evade NK cell-mediated lysis but the molecular basis for target cell resistance is not well understood. In the present study, we used a lentiviral shRNA library targeting more than 1000 human genes to identify 83 genes that promote target cell resistance to human NK cells. Many of the genes identified in this genetic screen belong to common signaling pathways, however, none of these genes have previously been known to modulate susceptibility of human tumor cells to immunologic destruction. In particular, gene silencing of two members of the JAK family (JAK1 and JAK2) in a variety of tumor cell targets increased their susceptibility to NK-mediated lysis and induced increased secretion of interferon gamma (IFN-gamma by NK cells. Treatment of tumor cells with JAK inhibitors also induced increased susceptibility to NK cell activity. These findings may have important clinical implications and suggest that small molecule inhibitors of tyrosine kinases being developed as therapeutic anti-tumor agents may also have significant immunologic effects in vivo. IM9 cells were transduced with shRNA-encoding vectors and selected with Puromycin. Two vectors were specifically targeting JAK1 (JAK1-1 and JAK1-3) and one vector encoded an irrelevant control shRNA (CTRL-2). Total RNA was obtained from the parental IM9 cell line, the control-shRNA expressing IM9 cells, the JAK1-1-shRNA and JAK1-3-shRNA expressing IM9 cells in 2 separate experiments (Exp1 and Exp2).
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.