Project description:The project was designed to explore biological rhythms in the hydrothermal vent mussel Bathymodiolus azoricus. The experiment provides the first high-resolution temporal transcriptomes of an hydrothermal species, both in situ and in the laboratory. For each condition, 5 mussels were sampled every 2h 4min for 24h 48min.
Project description:At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition and in situ protein expression of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea).
Project description:The present study describes the isolation of a Thermococcus sp. strain 175 from the world‘s deepest hydrothermal vent sites known thus far – The Mid-Cayman Rise.consisting of two hydrothermal venting systems Bee Bee (or Piccard), at 4950m depth and Von Damm (or Walsh) at 2300m The strain is capable of growth over 0.1MPa (atm. Pressure) to 120MPa, the widest known range of pressure dependent growth. The study further explores piezophilic adaptation using comparative genomic tools. Insights into the transcriptome of this strain providers the first look into the transcriptional machinery of peizophilic Thermococci.
Project description:<p>Deep-sea hydrothermal vents are unique ecosystems that may release chemically distinct dissolved organic matter to the deep ocean. Here, we describe the composition and concentrations of polar dissolved organic compounds observed in low and high temperature hydrothermal vent fluids at 9°50′N on the East Pacific Rise. The concentration of dissolved organic carbon was 46 µM in the low temperature hydrothermal fluids and 14 µM in the high temperature hydrothermal fluids. In the low temperature vent fluids, quantifiable dissolved organic compounds were dominated by water-soluble vitamins and amino acids. Derivatives of benzoic acid and the organic sulfur compound 2,3-dihydroxypropane-1-sulfonate (DHPS) were also present in low and high temperature hydrothermal fluids. The low temperature vent fluids contain organic compounds that are central to biological processes, suggesting that they are a by-product of biological activity in the subseafloor. These compounds may fuel heterotrophic and other metabolic processes at deep-sea hydrothermal vents and beyond.</p>
Project description:Iron-sulfur minerals such as pyrite are found in many marine benthic habitats. At deep-sea hydrothermal vent sites they occur as massive sulfide chimneys. Hydrothermal chimneys formed by mineral precipitation from reduced vent fluids upon mixing with cold oxygenated sea water. While microorganisms inhabiting actively venting chimneys and utilizing reduced compounds dissolved in the fluids for energy generation are well studied, only little is known about the microorganisms inhabiting inactive sulfide chimneys. We performed a comprehensive meta-proteogenomic analysis combined with radiometric dating to investigate the diversity and function of microbial communities found on inactive sulfide chimneys of different ages from the Manus Basin (SW Pacific). Our study sheds light on potential lifestyles and ecological niches of yet poorly described bacterial clades dominating inactive chimney communities.
Project description:A culture of the hydrothermal vent bacterium Nitrosophilus labii HRV44T was grown with N2O to investigate molecular mechanisms of N2O-based respiration. Limited sample sizes were collected at 0 hours (before N2O addition to the culture headspace) and at 3, 6, and 24 hours after N2O addition.
Project description:Biological carbon fixation is foundational to the biosphere. Most autotrophs are thought to possess one carbon fixation pathway. The hydrothermal vent tubeworm Riftia pachyptila’s chemoautotrophic symbionts, however, possess two functional pathways: the Calvin Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. Little is known about how Riftia’s symbionts and related organisms coordinate the functioning of these two pathways. Here we investigated net carbon fixation rates, transcriptional/metabolic responses, and transcriptional co-expression patterns of Riftia pachyptila’s endosymbionts by incubating tubeworms at environmental pressures, temperature, and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes, suggesting distinctive yet complementary roles in metabolic function. Net carbon fixation rates were also exemplary, and accordingly we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.