Project description:Background: Severe combined immunodeficiency (SCID) is characterized by arrested T lymphocyte production and B lymphocyte dysfunction, resulting in life-threatening infections. Early diagnosis of SCID through population-based newborn screening (NBS) optimizes clinical management and outcomes, and also permits identification of previously unknown factors essential for human lymphocyte development. Methods: SCID was detected, prior to onset of infections, by NBS of T cell receptor excision circles, a biomarker for thymic output. Upon confirmation, the affected baby was treated by allogeneic hematopoietic cell transplantation (HCT). The genetic cause was sought by exome sequencing of the patient and parents, followed by functional analysis of a prioritized candidate gene using human hematopoietic stem cells (HSC) and zebrafish embryos. Results: An infant with leaky SCID, craniofacial and dermal abnormalities, and absent corpus callosum had his immune deficit fully corrected by HCT. Exome sequencing revealed a heterozygous, de novo, missense mutation pN441K in BCL11B. The mutant Bcl11b protein had dominant negative activity, abrogating the ability of wild type Bcl11b to bind DNA, arresting T cell lineage development and disrupting HSC migration, revealing a novel function of Bcl11b. The patientâs defects, recapitulated in Bcl11b-deficient zebrafish, were reversed by ectopic expression of intact, but not mutant, human BCL11B. Conclusions: Newborn screening facilitated treatment and identification of a novel etiology for human SCID. Coupling exome sequencing with candidate gene evaluation in human HSC and in zebrafish revealed that a constitutional BCL11B mutation causes human multisystem anomalies with SCID, while also revealing a novel, pre-thymic role for Bcl11b in hematopoietic progenitors. 3 samples were analyzed in duplicate, Sample 1 was human HSC transduced with GFP only lentivirus which served as controls, Sample 2 was human HSC transduced with lentivirus expressing FLAG-tagged WT BCL11B and GFP, Sample 3 was human HSC transduced with lentivirus expressing FLAG-tagged mutant BCL11B and GFP
Project description:B-cell leukemia/lymphoma 11B (Bcl11b) is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. Functional analysis on the gene target list identified significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. n=4 wt STHdh striatal cells and n=4 Bcl11b-transfected STHdh striatal cells
Project description:Transcriptional profiling of mouse iNKT cells comparing wild type and Bcl11b deficient cell. The mice were treated with 4 μg of α-galactosylceramide. Goal was to determine the effects of transcription factor Bcl11b removal in iNKT cells. Intraperitoneal treatment with 4 μg of α-Galactosylceramide. Two pair of wild type (BCL11b F/F Vα14 transgenic) and Knock out (BCL11b F/F PLZF-Cre Vα14 transgenic)) mice were treated. Lymphocytes from spleen and liver were enriched and stain with PBS-57 Loaded CD1d tetramer. Pure iNKT cells were collected through cell sorter.
Project description:Review on the role of Bcl11b in thymus and periphery and impact on diseases RNA was extracted from DP thymocytes of bcl11bf/fCd4cre/tcra-/- and tcra-/- mice. Tcra-/- mice only have preselected DP thymocytes. Such mice were used to determine the role of Bcl11b before selection, considering the defective positive selection in bcl11bf/fcd4cre mice. RNA was isolated and submitted for library generation and microarray analysis to determine expression profile of bcl11b-/- preselected DP thymocytes.
Project description:Mucosal associated invariant T (MAIT) cells, already differentiated and located at mucosal sites, are critical in the body’s first wave of defenses against invading pathogens. Bcl11b KO MAIT cells fail to be maintained both in the thymus and peripheral organs. Furthermore, MAIT cells fail to fully develop in the thymus without Bcl11b, failing to upregulate RORγt, and that phenotype remains in the lungs and livers of these mice. Bcl11b deletion in MAIT cells causes dramatic shifts in the activation and TH17 programs, due to the binding of Bcl11b in many of those genes, which we have seen in the human MAIT cells. MAIT cells rely on PLZF and RORγt for their development and function, while also heavily relying on Bcl11b. These data show the key interplay of Bcl11b with PLZF and RORγt in a T cell leading to its development and necessary function to protect the body against diseases.
Project description:This study identified a cytogenetic-molecular entity, we named BCL11B-R, that showed a typical constellation of genomic features, namely BCL11B activation via chromosome translocations at 14q32, a distinct transcriptome profile, and FLT3 mutations.
Project description:T regulatory (Treg) cells have been studied in depth since their discovery for their potential use in therapies of autoimmune diseases. Treg cells have a suppression program that includes surface molecules CD25 (IL2R), cytotoxic T-lymphocyte associated protein 4 (CTLA4), and glucocorticoid-induced TNFR family (GITR) to limit aberrant and excessive inflammatory immune responses. We have shown that Bcl11b can bind to the CNS2 region in Foxp3 as well as the gene loci of those essential surface molecules for Treg suppression. Furthermore, we have identified a subset of Foxp3-independent genes in Treg cells directly regulated by Bcl11b binding. Bcl11b also directly represses expression of innate molecules such as transcription factors PU.1 and ID2 in Treg cells. Finally, we have also shown that removal of Bcl11b accelerates apoptosis in Treg cells as cleaved caspase 3 levels were significantly elevated in Bcl11b KO Treg cells when compared with WT Treg cells.
Project description:B-cell leukemia/lymphoma 11B (Bcl11b) is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. Functional analysis on the gene target list identified significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders.
Project description:To understand the impact of Bcl11b N440K variant on the DNA recognition by TCF1, we performed ChIP-seq of Bcl11b with Bcl11b+/+ and Bcl11b+/N440K thymocytes.
Project description:To understand the impact of Bcl11b N440K variant on the DNA recognition by Bcl11b, we performed ChIP-seq of Bcl11b with Bcl11b+/+ and Bcl11b+/N440K thymocytes.