Project description:Expression profiles at different time points during dendritic cell differentiation (induced by specific culture conditions) including monocytes as well as expression profiles between monocytes and completely differentiated cells (macrophages at day7 and dendritic cells at day7, respectively) were compared. Monocyte-derived dendritic cells (DC) were obtained by culturing elutriated monocytes with 20U/ml IL-4, 280U/ml GM-CSF and 10% FCS; monocyte-derived macrophages (MAC) were obtained by culturing elutriated monocytes with 2% AB serum. Three to seven biological replicates that are derived from independent healthy donors were included. One-color based gene expression. 2 datasets: dendritic cell kinetic study and comparison of monocyte, macrophage, and dendritic cells
Project description:Expression profiles at different time points during dendritic cell differentiation (induced by specific culture conditions) including monocytes as well as expression profiles between monocytes and completely differentiated cells (macrophages at day7 and dendritic cells at day7, respectively) were compared. Monocyte-derived dendritic cells (DC) were obtained by culturing elutriated monocytes with 20U/ml IL-4, 280U/ml GM-CSF and 10% FCS; monocyte-derived macrophages (MAC) were obtained by culturing elutriated monocytes with 2% AB serum.
Project description:We have carried out global gene expression analysis to clarify the interrelationship between 1,25-dihydroxyvitamin D3 and differentiation-driven gene expression patterns in developing human monocyte-derived dendritic cells. Monocytes were treated with 10 nM 1,25-dihydroxyvitamin D3 or vehicle 14 hours after plating for 12 hours or 5 days. Monocytes, differentiating dendritic cells (+/-1,25-dihydroxyvitamin D3 for 12 hours) and immature dendritic cells (+/-1,25-dihydroxyvitamin D3 for 5 days) were harvested. This design allows one to identify genes regulated by differentiation and/or 1,25-dihydroxyvitamin D3 in human monocyte-derived dendritic cells. Experiment Overall Design: Human monocytes were obtained from buffy coats from healthy donors by Ficoll gradient centrifugation followed by immunomagnetic cell separation with anti-CD14-conjugated microbeads. Monocytes were cultured in RPMI-1640 supplemented with 10% FBS, 800 U/ml GM-CSF and 500 U/ml IL-4. Monocytes were treated with 10 nM 1,25-dihydroxyvitamin D3 or vehicle 14 hours after plating for 12 hours or 5 days. Monocytes, differentiating dendritic cells (+/-1,25-dihydroxyvitamin D3 for 12 hours) and immature dendritic cells (+/-1,25-dihydroxyvitamin D3 for 5 days) were harvested. Experiments were performed in biological triplicates representing samples from different donors. 15 samples were processed and hybridized to Human Genome U133 Plus 2.0 Arrays.
Project description:In order to gain insights into how PPARg regulates different facets of dendritic cell (DC) differentiation, we sought to identify PPARg regulated genes and gene networks in monocyte-derived dendritic cells using global gene expression profiling. We employed an exogenous ligand activation approach using a selective PPARg ligand (rosiglitazone abbreviated as RSG). In addition, we have defined culture conditions in which human serum (HS) induces PPARg activation via a yet uncharacterized endogenous mechanism. We also compared the gene expression profile of developing dendritic cells obtained from patients harboring dominant negative mutations of the PPARg receptor (C114R and C131Y). Experiment Overall Design: Monocytes were cultured for 6, 24 hours or 5 days with 500 U/ml IL-4 and 800 U/ml GM-CSF; cytokine treatment was repeated at day 3. Cells were obtained from 12 healthy individuals (6 biological replicates; the 6 and 24 hours samples were obtained from a single individual but the 5 days samples from a different one). Ligands were added at the beginning of differentiation. The 6 and 24 hours cells were treated with vehicle (DC) or 1 uM rosiglitazone (DC RSG), in the case of 5 day cultured cells 2.5 uM RSG was used. Cells were cultured in RPMI plus 10% FBS, in the case of DC4-DC6 cells were also cultured in human AB serum (DC HS). Finally we also obtained cells from patients harboring point mutations of the PPARg receptor (C114R and C131Y)
Project description:We analyzed the transcriptomes of human dendritic cells and macrophages derived from monocytes using MCSF + IL-4 + TNFa, or IL-34 + IL-4 + TNFa, or dendritic cells derived from monocytes using GMCSF + IL-4.
Project description:The objective is to obtain miRNA representative signatures both in plasma and bronchoalveolar cell fraction that could serve as biomarker in respiratory diseases. The identification of new less invasive biomarkers is necessary to improve the detection and prognostic outcome of respiratory pathological processes. The measurement of miRNA expression through less invasive techniques such as plasma and serum have been suggested to analysis of several lung malignancies including lung cancer. These studies are assuming a common deregulated miRNA expression both in blood and lung tissue. The present study aimed to obtain miRNA representative signatures both in plasma and bronchoalveolar cell fraction that could serve as biomarker in respiratory diseases. we have compared circulating plasma miRNA with the bronchoalveolar cell fraction-derived miRNA patterns from 10 patients with several lung disease using a RT-qPCR assay.
Project description:The wide array of molecules carried by plasma regulates critical immune functions and constitutes valuable biomarkers and therapeutic targets. In recent years the introduction of “systems approaches” has provided investigators with powerful means for assessing immune responses in patient samples on a global scale. However, while the use of genome-wide profiling technologies has become widespread, measuring the plasma proteome still presents considerable challenges. An alternative approach that consists in measuring transcriptome responses in reporter cells exposed in vitro to patient plasma has been successfully employed in a limited number of studies. Here we devised such a “Transcriptomic Reporter Assay” system to assess the immunogenicity of plasma from septic patients and evaluate its potential for biomarker discovery. Sepsis is a common, severe systemic infectious process for which physicians still lack efficient diagnostic or prognostic tools. Of the three different cell reporter systems tested, neutrophils were identified as the most capable “plasma sensor”. Compared to peripheral blood mononuclear cells and dendritic cell preparations neutrophils were best able to discriminate between plasma from septic and control subjects and responded by upregulating a robust immune transcriptional program. Additionally, the amplitude of the neutrophil transcriptomic response was shown to be associated with disease severity in two additional sets of patients. Overall, our results demonstrate both the suitability and potential clinical relevance of a neutrophil reporter assay for assessing immunopathogenic processes in a complex and severe condition such as sepsis. Monocytes were isolated from two healthy donors. Monocytes were cultured with interleukin 4 (IL4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) to generate monocyte derived dendritic cells (MoDCs). Plasma samples were obtained from patients with culture-confirmed sepsis (n=12) and from uninfected controls (n=12). MoDCs were cultured for 6 h in medium alone, plasma from patients with sepsis, plasma from uninfected controls, and LPS using a final concentration of 20%. Transcriptional profiles were acquired using Illumina HumanHT12 V4 BeadChips.