Project description:As supplies of monocytes, macrophages and dendritic cells from human sources can be scarce or prone to donor variation we established an efficient method to generate induced pluripotent stem cell derived monocytes that in turn could be differentiated into both macrophages and dendritic cells. We used RNA sequencing to profile these from multiple differentiation runs (n=3) and multiple monocyte harvests (n=3-4) and compared them to their blood derived counterparts, blood derived monocyte, monocyte derived macrophages and moncyte derived dendritic cells (from 3 donors).
Project description:In this study gene expression of human blood classical monocytes (CD14++CD16-), CD16 positive monocytes (consisting of non-classical CD14+16++ and intermediate CD14++CD16+ monocytes) and CD1c+ CD19- dendritic cells from healthy subjects were investigated. Keywords: expression profiling by array
Project description:Expression profiles at different time points during dendritic cell differentiation (induced by specific culture conditions) including monocytes as well as expression profiles between monocytes and completely differentiated cells (macrophages at day7 and dendritic cells at day7, respectively) were compared. Monocyte-derived dendritic cells (DC) were obtained by culturing elutriated monocytes with 20U/ml IL-4, 280U/ml GM-CSF and 10% FCS; monocyte-derived macrophages (MAC) were obtained by culturing elutriated monocytes with 2% AB serum. Three to seven biological replicates that are derived from independent healthy donors were included. One-color based gene expression. 2 datasets: dendritic cell kinetic study and comparison of monocyte, macrophage, and dendritic cells
Project description:miR-Blood is a high-quality, small RNA expression atlas for the major components of human peripheral blood (plasma, erythrocytes, thrombocytes, monocytes, neutrophils, eosinophils, basophils, natural killer cells, CD4+ T cells, CD8+ T cells, and B cells). *** The data provided in this GEO dataset is licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). ***
Project description:Expression profiles at different time points during dendritic cell differentiation (induced by specific culture conditions) including monocytes as well as expression profiles between monocytes and completely differentiated cells (macrophages at day7 and dendritic cells at day7, respectively) were compared. Monocyte-derived dendritic cells (DC) were obtained by culturing elutriated monocytes with 20U/ml IL-4, 280U/ml GM-CSF and 10% FCS; monocyte-derived macrophages (MAC) were obtained by culturing elutriated monocytes with 2% AB serum.
Project description:A current paradigm states that monocytes circulate freely and patrol blood vessels, but differentiate irreversibly into dendritic cells or macrophages upon tissue entry. Here we show that bona fide undifferentiated monocytes reside in the spleen and outnumber their equivalents in circulation. The reservoir monocytes are relatively immotile, assemble in clusters in the cords of the subcapsular red pulp, and are distinct from macrophages and dendritic cells. In response to ischemic myocardial injury, splenic monocytes increase their motility, exit the spleen en masse, accumulate in injured tissue and participate in wound healing. These observations uncover a role for the spleen as a site for storage and rapid deployment of monocytes, and identify the splenic monocyte reservoir as a resource that the body exploits to regulate inflammation. The goal of this gene expression study was to compare the gene expression of Ly-6C hi inflammatory monocytes residing in the spleen and their circulating counterparts in the blood.
Project description:A phenotypically and functinoally distinct subset of human blood dendritic cells expressing CD11b is specific of the neonatal environment. We have employed whole genome microarray expression profiling to identify the specific gene signature of CD11b+ cord blood dendritic cells as compared to their adult peripheral blood counterparts. Peripheral blood adult cDC2 (CD20- CD11c+ CD14- BDCA1+ CD11b- ), neonatal cord blood cDC2 (CD20- CD11c+ CD14- BDCA1+ CD11b-) and neonatal cord blood cDC2b (CD20- CD11c+ CD14- BDCA1+ CD11b+) were FACS purified from BDCA1+ magnetically. Neonatal monocytes (CD11c+ CD14+) and neonatal naive T cells (CD3+ CD4+ CD56- CD25- CD45RO-) were used as controls.
Project description:We exploited label-free quantitative mass spectrometry to compare primary human blood Dendritic cells (DCs) subsets protein expression to identify new markers. Subsets distinguished are: Plasmacytoid DCs (pDC) and BDCA3+ and CD1c+ myeloid DCs and CD16+ monocytes. The dendritic cells were analyzed by LC-MS/MS and processed by MaxQuant for identification and LFQ quantification.