Project description:Benzene-degrading bioreactor microbial communities from Toronto, Ontario, Canada, that are methanogenic - September 2009 gDNA_4 metagenome
Project description:A combination of shotgun metaproteomics and 16S rRNA gene pyrosequencing wasused to identify potential functional pathways and key microorganisms involved in long-chain fatty acids (LCFA) anaerobic conversion. Microbial communities degrading saturated- and unsaturated-LCFA were compared. Archaeal communities were mainly composed of Methanosaeta, Methanobacterium and Methanospirillum species, both in stearate (saturated C18:0) and oleate (mono-unsaturated C18:1) incubations. Over 80% of the 16S rRNA gene sequences clustered within the Methanosaeta genus, which is in agreement with the high number of proteins assigned to this group (94%). Archaeal proteins related with methane metabolism were highly expressed. Bacterial communities were rather diverse and the composition dissimilar between incubations with saturated- and unsaturated-LCFA. Stearate-degrading communities were enriched in Deltaproteobacteria (34% of the assigned sequences), while microorganisms clustering within the Synergistia class were more predominant in oleate incubation (25% of the assigned sequences). Bacterial communities were diverse and active, given by the high percentage of proteins related with mechanisms of energy production. Several proteins were assigned to syntrophic bacteria, emphasizing the importance of the interactions between acetogens and methanogens in energy exchange and formation in anaerobic LCFA-rich environments.
Project description:A combination of shotgun metaproteomics and 16S rRNA gene pyrosequencing wasused to identify potential functional pathways and key microorganisms involved in long-chain fatty acids (LCFA) anaerobic conversion. Microbial communities degrading saturated- and unsaturated-LCFA were compared. Archaeal communities were mainly composed of Methanosaeta, Methanobacterium and Methanospirillum species, both in stearate (saturated C18:0) and oleate (mono-unsaturated C18:1) incubations. Over 80% of the 16S rRNA gene sequences clustered within the Methanosaeta genus, which is in agreement with the high number of proteins assigned to this group (94%). Archaeal proteins related with methane metabolism were highly expressed. Bacterial communities were rather diverse and the composition dissimilar between incubations with saturated- and unsaturated-LCFA. Stearate-degrading communities were enriched in Deltaproteobacteria (34% of the assigned sequences), while microorganisms clustering within the Synergistia class were more predominant in oleate incubation (25% of the assigned sequences). Bacterial communities were diverse and active, given by the high percentage of proteins related with mechanisms of energy production. Several proteins were assigned to syntrophic bacteria, emphasizing the importance of the interactions between acetogens and methanogens in energy exchange and formation in anaerobic LCFA-rich environments.
Project description:After extraction with mild non-denaturing detergents, we affinity-purified 785 endogenously-tagged CEPs and then identified stably-associated polypeptides by precision mass spectrometry. The resulting high-quality physical interaction network, comprising most (77%) of all targeted CEPs, revealed hundreds of previously unknown heteromeric complexes. Lab Heads: Andrew Emili; andrew.emili@utoronto.ca ;Donnelly CCBR, University of Toronto, Toronto ON M5S 3E1, Canada Mohan Babu; mohan.babu@uregina.ca ;Research and Innovation Centre, University of Regina, SK S4S OA2, Canada