Project description:A hyperthermophilic archaeon Thermococcus kodakarensis can grow in a wide range of temperatures from 60°C to 93°C, optimally at 85°C. To screen the genes that being specifically expressed at lowest growth temperature, 60°C, we investigated the transcriptional profilings of T. kodakarensis grown at 60˚C by comparing with those grown at 85°C.
Project description:This SuperSeries is composed of the following subset Series: GSE28549: Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus (Phenol vs. Benzoate) GSE30798: Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus (Benzene vs. Acetate) GSE30799: Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus (Benzene vs. Phenol) GSE30801: Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus (Benzene vs. Benzoate) Refer to individual Series
Project description:A hyperthermophilic archaeon Thermococcus kodakarensis can grow in a wide range of temperatures from 60°C to 93°C, optimally at 85°C. To screen the genes that being specifically expressed at lowest growth temperature, 60°C, we investigated the transcriptional profilings of T. kodakarensis grown at 60ËC by comparing with those grown at 85°C. One-condition experiment, KU216 grown at optimal growth temperature, 85°C vs. KU216 grown at lowest growth temperature, 60°C. Technical replicates: 2 KU216 grown at 60°C, independently measured. One replicate per array.
Project description:This SuperSeries is composed of the following subset Series: GSE26421: Expression analysis of benzoate degradation in the hyperthermophilic archaeon Ferroglobus placidus GSE26423: Expression analysis of phenol degradation in the hyperthermophilic archaeon Ferroglobus placidus Refer to individual Series
Project description:In this study, we generated allelic knockouts of ATP-dependent RNA ligase (Rnl) in hyperthermophilic archaeon T. kodakarensis and analyze the small RNAs.
Project description:Hyperthermophilic archeaon, Thermococcus onnurineus NA1 has known as a strict anaerobe. To date, a few of studies have been reported that strict anaerobe can grow using oxygen. However, the research of the growth enhancement of strict anaerobic archaeon belonging to the order of Thermococcales using the oxygen, in which has never been reported so far. In this study, we showed that the growth of T. onnurineus NA1 strain increased under various oxygen concentrations and we observed that oxygen was decreased in the headspace during the growth of cell. Genome-wide transcriptomic analysis was carried out to evaluate alterations in gene expression induced by O2 and to explain the physiological effects of oxidative stress on the growth of T. onnurineus NA1.
Project description:Thermococcus gammatolerans, the most radioresistant archaeon known to date, is an anaerobic and hyperthermophilic sulfur-reducing organism living in deep-sea hydrothermal vents. Knowledge of mechanisms underlying archaeal metal tolerance in such metal-rich ecosystem is still poorly documented. We showed that T. gammatolerans exhibits high resistance to cadmium (Cd), cobalt (Co) and zinc (Zn), a weaker tolerance to nickel (Ni), copper (Cu) and arsenate (AsO4) and that cells exposed to 1mM Cd exhibit a cellular Cd concentration of 67µM. A time-dependent transcriptomic analysis using microarrays was performed at a non-toxic (100μM) and a toxic (1mM) Cd dose. The reliability of microarray data was strengthened by real time RT-PCR validations. Altogether, 114 Cd responsive genes were revealed and a substantial subset of genes is related to metal homeostasis, drug detoxification, re-oxidization of cofactors and ATP production. This first genome-wide expression profiling study of archaeal cells challenged with Cd showed that T. gammatolerans withstands induced stress through pathways observed in both prokaryotes and eukaryotes but also through new and original strategies. T. gammatolerans cells challenged with 1mM Cd basically promote: 1) the induction of several transporter/permease encoding genes, probably to detoxify the cell; 2) the upregulation of Fe transporters encoding genes to likely compensate Cd damages in iron-containing proteins; 3) the induction of membrane-bound hydrogenase (Mbh) and membrane-bound hydrogenlyase (Mhy2) subunits encoding genes involved in recycling reduced cofactors and/or in proton translocation for energy production. By contrast to other organisms, redox homeostasis genes appear constitutively expressed and only a few genes encoding DNA repair proteins are regulated. We compared the expression of 27 Cd responsive genes in other stress conditions (Zn, Ni, heat shock, γ-rays), and showed that the Cd transcriptional pattern is comparable to other metal stress transcriptional responses (Cd, Zn, Ni) but not to a general stress response.