Project description:Illumina high-throughput sequencing was used to analyse the intestinal bacteria of these two species during different wintering periods at Shengjin Lake. We tested whether contact time enhances the trans-species spread of gut bacteria. Our results indicate that although intestinal microflora of hooded crane and the bean goose were different, direct or indirect contact in the mixed-species flock caused the spread of gut bacteria trans-species, and a very high proportion of common pathogens among these two hosts.
Project description:Previous studies have demonstrated that the iron content in marine heterotrophic bacteria is comparatively higher than that of phytoplankton. Therefore, they have been indicated to play a major role in the biogeochemical cycling of iron. In this study, we aimed to investigate the potential of viral lysis as a source of iron for marine heterotrophic bacteria. Viral lysates were derived from the marine heterotrophic bacterium, Vibrio natriegens PWH3a (A.K.A Vibrio alginolyticus). The bioavailability of Fe in the lysates was determined using a model heterotrophic bacterium, namely, Dokdonia sp. strain Dokd-P16, isolated from Fe-limited waters along Line P transect in the Northeastern Pacific Ocean. The bacteria were grown under Fe-deplete or Fe-replete conditions before being exposed to the viral lysate. Differential gene expression following exposure to the viral lysate was analyzed via RNA sequencing to identify differentially expressed genes under iron-replete and iron-deplete conditions. This study would provide novel insights into the role of viral lysis in heterotrophic bacteria in supplying bioavailable iron to other marine microorganisms under iron-limiting and non-limiting conditions. First, the marine heterotrophic bacterium genome, Dokdonia sp. strain Dokd-P16, was sequenced to provide a genomic context for the expression studies. Subsequently, the relative gene expression in Dokdonia sp. strain Dokd-P16 grown under Fe limiting and non-limiting conditions were analyzed. This transcriptomic approach would be utilized to elucidate genes regulated by Fe availability in Dokdonia sp. strain Dokd-P16, which indicate its Fe-related response viral lysate exposure. Taken together, in this study, the transcriptomic responses of Fe-limited and non-limited marine heterotrophic bacteria were analyzed, which provided novel insights into the biological availability of Fe from the viral lysates.
Project description:With its 2.5 Mb DNA genome packed in amphora-shaped particles of bacterium-like dimension (1.2 µm in length, 0.5 µm in diameter), the Acanthamoeba-infecting Pandoravirus salinus remained the most spectacular and intriguing virus since its description in 2013. Following its isolation from shallow marine sediment off the coast of central Chile, that of its relative Pandoravirus dulcis from a fresh water pond near Melbourne, Australia, suggested that they were the first representatives of an emerging worldwide-distributed family of giant viruses. This was further suggested when P. inopinatum discovered in Germany, was sequenced in 2015. We now report the isolation and genome sequencing of three new strains (P. quercus, P.neocaledonia, P. macleodensis) from France, New Caledonia, and Australia. Using a combination of transcriptomic, proteomic, and bioinformatic analyses, we found that these six viruses share enough distinctive features to justify their classification in a new family, the Pandoraviridae, distinct from that of other large DNA viruses.
Project description:Bacteria respond to stimuli in the environment using transcriptional control, but this may not be the case for most marine bacteria having small, streamlined genomes. Candidatus Pelagibacter ubique, a cultivated representative of the SAR11 clade, which is the most abundant clade in the oceans 4, has a small, streamlined genome and possesses an unusually small number of transcriptional regulators. This observation leads to the hypothesis that transcriptional control is low in Pelagibacter and limits its response to environmental conditions. However, the extent of transcriptional control in Pelagibacter is unknown. Here we show that transcriptional control is extremely low in Pelagibacter and another oligotroph (SAR92) compared to two marine copiotrophic bacterial taxa, Polaribacter MED152 and Ruegeria pomeroyi. We found that ~0.1% of protein-encoding genes in Pelagibacter are under transcriptional control compared to >10% of genes in other marine bacteria. Regardless of the growth condition, the same genes were highly expressed while most genes were always expressed at very low levels. Quantitative RNA sequencing revealed that abundances of most Pelagibacter transcripts were <0.01 copies per cell whereas transcript abundances were 1 to 10 copies per cell in some other bacteria. Our results demonstrate that Pelagibacter can change growth without shifts in transcript levels, suggesting that transcriptional control plays a minimal role in the adaptive strategy for one of the most successful organisms in the biosphere.
Project description:Bacteria respond to stimuli in the environment using transcriptional control, but this may not be the case for most marine bacteria having small, streamlined genomes. Candidatus Pelagibacter ubique, a cultivated representative of the SAR11 clade, which is the most abundant clade in the oceans 4, has a small, streamlined genome and possesses an unusually small number of transcriptional regulators. This observation leads to the hypothesis that transcriptional control is low in Pelagibacter and limits its response to environmental conditions. However, the extent of transcriptional control in Pelagibacter is unknown. Here we show that transcriptional control is extremely low in Pelagibacter and another oligotroph (SAR92) compared to two marine copiotrophic bacterial taxa, Polaribacter MED152 and Ruegeria pomeroyi. We found that ~0.1% of protein-encoding genes in Pelagibacter are under transcriptional control compared to >10% of genes in other marine bacteria. Regardless of the growth condition, the same genes were highly expressed while most genes were always expressed at very low levels. Quantitative RNA sequencing revealed that abundances of most Pelagibacter transcripts were <0.01 copies per cell whereas transcript abundances were 1 to 10 copies per cell in some other bacteria. Our results demonstrate that Pelagibacter can change growth without shifts in transcript levels, suggesting that transcriptional control plays a minimal role in the adaptive strategy for one of the most successful organisms in the biosphere. Bacteria were grown in batch culture and sampled twice during the initial, rapid phase of exponential growth and twice during the phase of slower growth that followed.