Project description:Bacteria respond to stimuli in the environment using transcriptional control, but this may not be the case for most marine bacteria having small, streamlined genomes. Candidatus Pelagibacter ubique, a cultivated representative of the SAR11 clade, which is the most abundant clade in the oceans 4, has a small, streamlined genome and possesses an unusually small number of transcriptional regulators. This observation leads to the hypothesis that transcriptional control is low in Pelagibacter and limits its response to environmental conditions. However, the extent of transcriptional control in Pelagibacter is unknown. Here we show that transcriptional control is extremely low in Pelagibacter and another oligotroph (SAR92) compared to two marine copiotrophic bacterial taxa, Polaribacter MED152 and Ruegeria pomeroyi. We found that ~0.1% of protein-encoding genes in Pelagibacter are under transcriptional control compared to >10% of genes in other marine bacteria. Regardless of the growth condition, the same genes were highly expressed while most genes were always expressed at very low levels. Quantitative RNA sequencing revealed that abundances of most Pelagibacter transcripts were <0.01 copies per cell whereas transcript abundances were 1 to 10 copies per cell in some other bacteria. Our results demonstrate that Pelagibacter can change growth without shifts in transcript levels, suggesting that transcriptional control plays a minimal role in the adaptive strategy for one of the most successful organisms in the biosphere. Bacteria were grown in batch culture and sampled twice during the initial, rapid phase of exponential growth and twice during the phase of slower growth that followed.
Project description:Previous studies have demonstrated that the iron content in marine heterotrophic bacteria is comparatively higher than that of phytoplankton. Therefore, they have been indicated to play a major role in the biogeochemical cycling of iron. In this study, we aimed to investigate the potential of viral lysis as a source of iron for marine heterotrophic bacteria. Viral lysates were derived from the marine heterotrophic bacterium, Vibrio natriegens PWH3a (A.K.A Vibrio alginolyticus). The bioavailability of Fe in the lysates was determined using a model heterotrophic bacterium, namely, Dokdonia sp. strain Dokd-P16, isolated from Fe-limited waters along Line P transect in the Northeastern Pacific Ocean. The bacteria were grown under Fe-deplete or Fe-replete conditions before being exposed to the viral lysate. Differential gene expression following exposure to the viral lysate was analyzed via RNA sequencing to identify differentially expressed genes under iron-replete and iron-deplete conditions. This study would provide novel insights into the role of viral lysis in heterotrophic bacteria in supplying bioavailable iron to other marine microorganisms under iron-limiting and non-limiting conditions. First, the marine heterotrophic bacterium genome, Dokdonia sp. strain Dokd-P16, was sequenced to provide a genomic context for the expression studies. Subsequently, the relative gene expression in Dokdonia sp. strain Dokd-P16 grown under Fe limiting and non-limiting conditions were analyzed. This transcriptomic approach would be utilized to elucidate genes regulated by Fe availability in Dokdonia sp. strain Dokd-P16, which indicate its Fe-related response viral lysate exposure. Taken together, in this study, the transcriptomic responses of Fe-limited and non-limited marine heterotrophic bacteria were analyzed, which provided novel insights into the biological availability of Fe from the viral lysates.
2021-11-01 | GSE166618 | GEO
Project description:Bacteria isolation from marine and lake Genome sequencing and assembly
Project description:Vibrio species represent one of the most diverse genera of marine bacteria known for their ubiquitous presence in natural aquatic systems. Several members of this genus including Vibrio harveyi are receiving increasing attention lately because they are becoming a source of health problems, especially for some marine organisms widely used in sea food industry. To learn about adaptation changes triggered by V. harveyi during its long-term persistence at elevated temperatures, we studied adaptation of this marine bacterium in sea water microcosms at 30 oC that closely mimicks the upper limits of sea surface temperatures recorded around the globe.