Project description:The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.
Project description:Microbial biofilms are omnipresent and implicated in a wide spectrum of areas ranging from bioremediation, food production and biomedical applications. To date little is understood about how biofilm communities develop and function on a molecular level, due to the complexity of these biological systems. Here we ap-ply a meta-proteomics approach to investigate the mechanism driving biofilm formation in a microbial model consortium of four bacterial soil isolates of Steno-trophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paeni-bacillus amylolyticus. The protein abundances between community and the single species biofilms were compared to describe how different metabolic pathways were influenced by inter-species interactions. Our results indicate that community development is dependent on interactions between community members facilitat-ing surface attachment and cross-feeding on specific amino acids. Opposite regu-lation patterns of fermentation and nitrogen pathways in Paenibacillus amylolyticus and Xanthomonas retroflexus may, however, also indicate that competition for lim-ited resources affects community development. Overall our results demonstrate the multitude of pathways characterizing biofilm formation in mixed communities. In order to obtain full taxonomic resolution between closely related species and empower correct protein quantification, we developed a novel pipeline for removing peptide sequences shared between community members from the ref-erence proteomes used for spectral database searches. This pipeline can readily be applied to other microbial communities.
Project description:Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate).Soils were characterized for geochemistry, Illumina sequencing was used to determine microbial taxonomic communities and GeoChips 5.0 were used to determine microbial functional genes.
Project description:Here we report a direct tRNA sequencing protocol and software to simultaneously examine the composition and biological activity of naturally occurring microbial communities. Our analysis of mouse gut microbiome with tRNA-seq and 16S ribosomal RNA gene amplicons revealed comparable microbial community structures, and additional physiological insights into the microbiome through tRNA abundance and modifications.