Project description:Gene expression microarrays accompanying "Proteomic and genomic characterization of a yeast model for Ogden syndrome" by Doerfel et al 2016 in press at Yeast. Naa10 is a Na-terminal acetyltransferase that, in a complex with its auxiliary subunit Naa15, co-translationally acetylates the a-amino group of newly synthetized proteins as they emerge from the ribosome. Roughly 40-50% of the human proteome is acetylated by Naa10, rendering this an enzyme with one of the most broad substrate ranges known. Recently, we reported an X-linked disorder of infancy, Ogden syndrome, in two families harboring a c.109T>C (p.Ser37Pro) variant in NAA10. In the present study we performed in-depth characterization of a yeast model of Ogden syndrome. Stress tests and proteomic analyses suggest that the S37P mutation disrupts Naa10 function and reduces cellular fitness during heat shock, possibly due to dysregulation of chaperone expression and accumulation. Microarray and RNA-seq revealed a pseudo-diploid gene expression profile in DNaa10 cells, likely responsible for a mating defect. In conclusion, the data presented here further support the disruptive nature of the S37P/Ogden mutation and identify affected cellular processes potentially contributing to the severe phenotype seen in Ogden syndrome.
Project description:The canonical role of eEF1A is to deliver the aminoacyl tRNA to the ribosome, we have used the yeast model system to investigate further roles for this protein. We used microarray to study the transcriptomic effects of elevated levels of eEF1A on yeast cells during log phase growth