Project description:Ascophyllum nodosum extract induced salinity tolerance in Arabidopsis thaliana We used microarrays to detail the global programme of gene expression underlying ANE mediated salinity tolerance in the Arabidopsis thaliana
Project description:Salinity stress is a major problem affecting plant growth and crop productivity. While plant biostimulants have been reported to be an effective solution to tackle salinity stress in different crops, the key genes and metabolic pathways involved in these tolerance processes remain unclear. This study focused on integrating phenotypic, physiological, biochemical and transcriptome data obtained from different tissues of Solanum lycopersicum L. plants (cv. Micro-Tom) subjected to a saline irrigation water program for 61 days (EC: 5.8 dS/m) and treated with a combination of protein hydrolysate and Ascophyllum nodosum-derived biostimulant, namely PSI-475. The biostimulant application was associated with the maintenance of higher K+/Na+ ratios in both young leaf and root tissue and the overexpression of transporter genes related to ion homeostasis (e.g., NHX4, HKT1;2). A more efficient osmotic adjustment was characterized by a significant increase in relative water content (RWC), which most likely was associated with osmolyte accumulation and upregulation of genes related to aquaporins (e.g., PIP2.1, TIP2.1). A higher content of photosynthetic pigments (+19.8% to +27.5%), increased expression of genes involved in photosynthetic efficiency and chlorophyll biosynthesis (e.g., LHC, PORC) and enhanced primary carbon and nitrogen metabolic mechanisms were observed, leading to a higher fruit yield and fruit number (47.5% and 32.5%, respectively). Overall, it can be concluded that the precision engineered PSI-475 biostimulant can provide long-term protective effects on salinity stressed tomato plants through a well-defined mode of action in different plant tissues.
2022-11-16 | GSE217631 | GEO
Project description:Priming with an Ascophyllum nodosum extract improves drought tolerance in tomato
| PRJNA592330 | ENA
Project description:Priming with an Ascophyllum nodosum extract improves drought tolerance in Arabidopsis
Project description:Micro RNAs (miRNAs) are a class of small endogenous RNAs conserved in eukaryotic organisms including plants. They suppress gene expression post-transcriptionally in many different biological processes. Previously, we reported salinity-induced changes in gene expression in transgenic Arabidopsis thaliana plants that constitutively expressed a pea abscisic acid-responsive (ABR17) gene. In the current study, we used a microarray to investigate the role of miRNA-mediated post-transcriptional gene regulation in these same transgenic plants in the presence and absence of salinity stress. We identified nine miRNAs that were significantly modulated due to ABR17 gene expression, and seven miRNAs that were modulated in response to salt stress. The target genes regulated by these miRNAs were identified using starBase (sRNA target Base) Degradome analysis and through 5' RNA Ligase Mediated-Rapid Amplification of cDNA Ends (RLM-RACE). Our findings revealed miRNA:mRNA interactions comprising regulatory networks of Auxin Response Factor (ARF), ARGONAUTE 1, (AGO1), Dicer-like proteins 1 (DCL1), Squamosa Promoter Binding (SPB), NAC, APETALA 2 (AP2), Nuclear Factor-Y (NFY), RNA binding proteins, Arabidopsis thaliana vacuolar phyrophosphate 1 (AVP1) and Pentatricopetide repeat (PPR) in ABR17 transgenic A. thaliana, which control physiological, biochemical and stress signalling cascades due to the imposition of salt stress. Our results are discussed within the context of the effect of the transgene, ABR17, and the roles miRNA expression may play in mediating plant responses to salinity.
Project description:Arabidopsis ecotypes of Sha and Ler showed differences in tolerance to salinity stress. A previous study indicated that a premature stop codon resulting in a truncated Response to ABA and Salt 1 (RAS1) protein in Sha contributes to the increased salt tolerance relative to Ler ecotype. Sha exhibited higher germination rates and longer roots on MS plate, presumably due to the decreased ABA sensitivity in Sha. More Sha plants also survived in soil after salt treatment with relatively lower electrolyte leakage when compared to Ler. Transcriptome analysis revealed that expression levels of many genes were changed between Sha and Ler ecotypes and by salt treatments. About 500 transcripts were commonly changed by at least one salinity effect and one ecotype effect, and 171 of them were co-regulated by all four comparisons. Transcripts involved in redox, secondary metabolism, auxin metabolism, photosynthesis, cell wall, and protein synthesis were mainly down-regulated by salinity effects, while transposable element genes, microRNA and antisense sequences, histone superfamily genes, and biotic stress related genes were significantly changed by Sha ecotype effects and only slightly by salinity. Several metabolic pathways such as stress, TCA, hormone/lipid/secondary metabolism, redox, development, and GO terms involved in stress, oxidation, and defense response were enriched by both salinity and ecotype effects. Ninety-five highly inducible genes were identified as candidates of RAS1 target genes and the functions involved hormone metabolism, biotic stress, RNA, DNA synthesis, protein metabolism, cell, and microRNA metabolism. All these results indicated that the Sha ecotype was possibly preconditioned to abiotic stress relative to Ler through regulation of signaling pathways and stress responsive gene expression. These comparative transcriptomic and analytical results also confirm the complexity of ABA responses and salt stress tolerance mechanisms, and they suggest additional targets for improving tolerance.
Project description:Micro RNAs (miRNAs) are a class of small endogenous RNAs conserved in eukaryotic organisms including plants. They suppress gene expression post-transcriptionally in many different biological processes. Previously, we reported salinity-induced changes in gene expression in transgenic Arabidopsis thaliana plants that constitutively expressed a pea abscisic acid-responsive (ABR17) gene. In the current study, we used a microarray to investigate the role of miRNA-mediated post-transcriptional gene regulation in these same transgenic plants in the presence and absence of salinity stress. We identified nine miRNAs that were significantly modulated due to ABR17 gene expression, and seven miRNAs that were modulated in response to salt stress. The target genes regulated by these miRNAs were identified using starBase (sRNA target Base) Degradome analysis and through 5' RNA Ligase Mediated-Rapid Amplification of cDNA Ends (RLM-RACE). Our findings revealed miRNA:mRNA interactions comprising regulatory networks of Auxin Response Factor (ARF), ARGONAUTE 1, (AGO1), Dicer-like proteins 1 (DCL1), Squamosa Promoter Binding (SPB), NAC, APETALA 2 (AP2), Nuclear Factor-Y (NFY), RNA binding proteins, Arabidopsis thaliana vacuolar phyrophosphate 1 (AVP1) and Pentatricopetide repeat (PPR) in ABR17 transgenic A. thaliana, which control physiological, biochemical and stress signalling cascades due to the imposition of salt stress. Our results are discussed within the context of the effect of the transgene, ABR17, and the roles miRNA expression may play in mediating plant responses to salinity. In this miRNA-microarray experiment, a total of 4 samples were analyzed with their 3 biological replicates. Two samples, WT and ABR17 control (without salt treatment), were used as reference controls.