Project description:Ascophyllum nodosum extract induced salinity tolerance in Arabidopsis thaliana We used microarrays to detail the global programme of gene expression underlying ANE mediated salinity tolerance in the Arabidopsis thaliana
2016-09-07 | GSE86481 | GEO
Project description:Transcriptome analysis of Ascophyllum nodosum-treated tomato
Project description:A comparative study ware made to know the abiotic stress tolerance machanism between tolerant and susceptible plants at flowering stage. The tolerance in response to abiotic stresses are sum of expression of thousands of genes at a particular stage. Tomato plants were exposed to drought and heat stress for RNA extraction and hybridization on Affymetrix microarrays. To study the molecular mechanism of abiotic stress tolerance to increase the tolerance in tomato plants, transcripts of tolerant and susceptible plants at flowering stage were compared in response to heat and water stress.
Project description:To improve both drought stress tolerance and growth of plants, we generated transgenic Arabidopsis plants that overexpress DREB1A and GA5. It was reported that DREB1A improves drought stress tolerance in various crops but causes dwarfism, and GA5 encodes a GA synthetic enzyme which enhances plant growth. We performed microarray experiments using a single overexpressor of GA5 and the double overexpressor of DREB1A and GA5 to study the potential interactions of the gene networks regulated by the two factors in the double overexpressor.
Project description:To improve both drought stress tolerance and growth of plants, we generated transgenic Arabidopsis plants that overexpress two transcription factors: DREB1A and PIF4. It was reported that DREB1A improves drought stress tolerance in various crops but causes dwarfism, and PIF4 enhances cell elongation through activation of cell wall synthesis. We performed microarray experiments using a single overexpressor of PIF4 and the double overexpressor of DREB1A and PIF4 to study the potential interactions of the gene networks regulated by the two transcription factors in the double overexpressor.
Project description:To improve both drought stress tolerance and growth of plants, we generated transgenic Arabidopsis plants that overexpress two transcription factors: DREB1A and OsPIL1. It was reported that DREB1A improves drought stress tolerance in various crops but causes dwarfism, and OsPIL1 enhances cell elongation through activation of cell wall synthesis in rice. We performed microarray experiments using a single overexpressor of OsPIL1 and the double overexpressor of DREB1A and OsPIL1 to study the potential interactions of the gene networks regulated by the two transcription factors in the double overexpressor.
Project description:Salinity stress is a major problem affecting plant growth and crop productivity. While plant biostimulants have been reported to be an effective solution to tackle salinity stress in different crops, the key genes and metabolic pathways involved in these tolerance processes remain unclear. This study focused on integrating phenotypic, physiological, biochemical and transcriptome data obtained from different tissues of Solanum lycopersicum L. plants (cv. Micro-Tom) subjected to a saline irrigation water program for 61 days (EC: 5.8 dS/m) and treated with a combination of protein hydrolysate and Ascophyllum nodosum-derived biostimulant, namely PSI-475. The biostimulant application was associated with the maintenance of higher K+/Na+ ratios in both young leaf and root tissue and the overexpression of transporter genes related to ion homeostasis (e.g., NHX4, HKT1;2). A more efficient osmotic adjustment was characterized by a significant increase in relative water content (RWC), which most likely was associated with osmolyte accumulation and upregulation of genes related to aquaporins (e.g., PIP2.1, TIP2.1). A higher content of photosynthetic pigments (+19.8% to +27.5%), increased expression of genes involved in photosynthetic efficiency and chlorophyll biosynthesis (e.g., LHC, PORC) and enhanced primary carbon and nitrogen metabolic mechanisms were observed, leading to a higher fruit yield and fruit number (47.5% and 32.5%, respectively). Overall, it can be concluded that the precision engineered PSI-475 biostimulant can provide long-term protective effects on salinity stressed tomato plants through a well-defined mode of action in different plant tissues.
Project description:Drought is a major environmental constraint affecting physiological, biochemical and molecular changes of crops, causing loss in crop productivities. Understanding the molecular mechanisms of drought tolerance is important for crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper class IV transcription factor gene, Rice outermost cell-specific gene 10 (Roc10), improves drought tolerance and grain yield by increasing lignin accumulation in ground tissues of rice plants. Overexpression of Roc10 significantly enhanced drought tolerance of transgenic rice plants at the vegetative stages of growth with highly effective photosystem and reduction of water loss rate as compared with non-transgenic control and RNAi plants. More importantly, Roc10 overexpression plants had higher drought tolerance at the reproductive stage of growth with higher grain yield over controls under field-drought conditions. We identified downstream and putative target genes of Roc10 by using RNA-seq and ChIP-seq data of rice shoots. Roc10 overexpression elevated the expression levels of lignin biosynthetic genes in shoots with a concomitant increase in accumulation of lignin. The overexpression and RNAi lines showed opposite patterns of lignin accumulation. The Roc10 is mainly expressed in the outer cell layers including epidermis and vasculature of shoots that coincides with areas of increased lignification. Furthermore, the Roc10 was found to directly bind to the promoter of PEROXIDASEN/PEROXIDASE38, a key gene in lignin biosynthesis. Together, our findings suggested that the Roc10 confers drought stress tolerance by enhancing lignin biosynthesis in ground tissues of rice plants.