Project description:A microarray-based transcriptome profiling was performed to provide a better understanding of the effects of maleic acid on human. Gene expression profiles of human neuroblastoma SH-SY5Y cells exposed to three concentrations of maleic acid (10, 50 and 100 μM) for 24 h were analyzed.
Project description:To investigate impact of CLN3 deficiency on cell signaling and metabolism, SH-SY5Y neuroblastoma cells were transiently transfected with CLN3 siRNA (siCLN3; n=3) or control siRNA (siCTL; n=3). Transcriptomes of siCTL and siCLN3 SH-SY5Y cells were determined using Affymetrix Human Genome U133 plus 2 arrays.
Project description:H3K27me3 ChIP-seq was performed on: 1) untreated SH-SY5Y human neuroblastoma cells (day 0) 2) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment - day 7) 3) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment + 7 days of recover - day 14)
Project description:WGBS was performed on: 1) untreated SH-SY5Y human neuroblastoma cells (day 0) 2) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment - day 7) 3) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment followed by 7 days of recovery - day 14)
Project description:The human neuroblastoma cell lines SH-SY5Y and IMR-32 can be differentiated into neuron-like phenotypes through treatment with all-trans retinoic acid (ATRA). After differentiation, these cell lines are extensively utilized as in vitro models to study various aspects of neuronal cell biology. However, temporal and quantitative profiling of the proteome and phosphoproteome of SH-SY5Y and IMR-32 cells throughout ATRA-induced differentiation has been limited. Here, we performed relative quantification of the phosphoproteomes of SH-SY5Y and IMR-32 cells at multiple time points during ATRA-induced differentiation. The data presented serve as a valuable resource for investigating temporal protein and phosphoprotein abundance changes in SH-SY5Y and IMR-32 cells during ATRA-induced differentiation.
Project description:The human neuroblastoma cell lines SH-SY5Y and IMR-32 can be differentiated into neuron-like phenotypes through treatment with all-trans retinoic acid (ATRA). After differentiation, these cell lines are extensively utilized as in vitro models to study various aspects of neuronal cell biology. However, temporal and quantitative profiling of the proteome and phosphoproteome of SH-SY5Y and IMR-32 cells throughout ATRA-induced differentiation has been limited. Here, we performed relative quantification of the proteomes of SH-SY5Y and IMR-32 cells at multiple time points during ATRA-induced differentiation. The data presented serve as a valuable resource for investigating temporal protein and phosphoprotein abundance changes in SH-SY5Y and IMR-32 cells during ATRA-induced differentiation.
Project description:DNA topoisomerase IIB has an important role in ligand mediated transcriptional regulation of gene expression. SH-SY5Y is a neuroblastoma cell line that can be induced to differentiate into neuronal-like cells in response to retinoic acid. In this study TOP2B has been knocked out using crispr-cas9 to determine the role of TOP2B in the transcriptional response to retinoic acid. RNA was prepared from untreated wild type and TOP2B null SH-SY5Y cells and from cells exposed to 10 uM All Trans Retinoic Acid (ATRA) for 24 hours.
Project description:Whole-genome profiling of SH-SY5Y cells was done on neuroblastoma SH-SY5Y stably transfected with cDNAs coding for SOD1WT or the mutant SOD1(G93A) protein.
Project description:This SuperSeries is composed of the following subset Series:; GSE16656: Transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblatoma SH-SY5Y cells: 24h; GSE16766: Transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells: 1h; GSE16767: Transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells: 4h Experiment Overall Design: Refer to individual Series
Project description:MicroRNA (miRNA) has been highlighted in pathogen-host interactions, however, little is known about roles of miRNAs in neurological pathogenesis of human enterovirus 71 (HEV71) infections. In this study, the comprehensive miRNA expression profiling in HEV71-infected human neuroblastoma SH-SY5Y cells were performed to identify cellular miRNAs response to HEV71. A total of 69 miRNAs were differentially expressed in HEV71-infected SH-SY5Y cells compared to non-infected cells. These findings provide new information on the miRNA and mRNA profiles in HEV71 infection, which may serve as a basis for further investigation into the biological functions of miRNAs in the neurological pathogenesis of HEV71 infections. Human neuroblastoma SH-SY5Y cells were infected with HEV71. After infection, the cells were harvested and extracted total RNA for miRNA profiling by hybridization on Affymetrix microarrays. A total of 69 miRNAs were differentially expressed inHEV71-infected SH-SY5Y cells compared to non-infected cells.