Project description:These datasets describe a melanocyte specific, HIF1A-Dependent / Hypoxia-Responsive gene expression signature defined by the regulation of genes critical to metabolism, chromatin and transcriptional regulation, vascularization and cellular invasivness. These genes provide lineage specific targets for refinement of diagnostic markers associated with primary melanoma tumor metastatic potential, and also provides novel molecular targets for therapeutic strategies targeting metastatic disease progression.
Project description:We report the application of chromatin immunoprecipitation and next generation sequencing technology for HIF1a binding sites at genome wide level in a RCC (renal cell carcinoma) cell line under hypoxia conditions. We found HIF1a binding sites in Caki-2 cell line under hypoxia conditions. Especially, we found HIF1a bind to SPOP under hypoxia condition, which was further validated. Examination of HIF1a binding sites in Caki-2 cell line under hypoxia condition
Project description:Background - Hepatocellular carcinomas (HCCs) are heterogeneous tumors with respect to etiology, cell of origin and biology. The course of the disease is unpredictable and is in part dependent on the tumor microenvironment. One of the microenvironmental factors is hypoxia, which is known to promote aggressiveness in other malignant tumors. We hypothesized that certain regions in HCC exist with chronic hypoxia and a characteristic gene expression pattern. Moreover, during the development of HCC there is an important contribution of this chronic hypoxia on prognosis via this gene expression. Until now, most research has been performed in acute hypoxic models (< 24 hours). Methods – Human hepatoblastoma cells HepG2 were cultured in either normoxic (20% O2) or hypoxic (2% O2) conditions for 72 hrs, the time it takes to adapt to chronic hypoxia. After 3 days the cells were harvested and analyzed by microarray technology. The highly significant differentially expressed genes were selected and used to assess the clinical value of our in vitro chronic hypoxia gene signature in four published patient studies. Three of these independent microarray studies on HCC patients were used as training sets to determine a minimal prognostic gene set and one study was used for validation. Gene expression analysis and correlation with clinical outcome was assessed with the bioinfomatic method of Goeman et al (). Results – In the HepG2 cells, 3592 genes were differentially expressed in cells cultured at 2% oxygen for 72 hrs. Out of these, 265 showed a high significant change (2-fold change and p=0.0001). The level of gene expression after 72 hrs was different from the acute hypoxic response (during the first 24 hours) and represented chronicity. Using computational methods we identified 7 out of the 265 highly significant genes that showed correlation with prognosis in all three different training sets and this was independently validated in a 4th dataset. With our approach we could include the largest number of HCC patients in one single study. Conclusion – We identified a 7-gene signature, which is associated with chronic hypoxia and predicts prognosis in patients with HCC. In the future this signature could be used as a diagnostic tool. In addition, chronic hypoxia gene expression information can be used in the search for new therapeutic targets. Two conditions were compared and each sample has a biological replicate. Samples are hybridized in dye-swap, resulting in 4 hybridizations.
Project description:We and others have previously shown FOXA1 is frequently mutated or downregulated in castration resistant prostate cancer (CRPC). Here we report a novel role for transcription factor FOXA1 in directly repressing HIF1A expression in prostate cancer cells. FOXA1 knockdown induced the expression of HIF1A and hypoxia signature genes, which were reduced by concomitant HIF1A knockdown or treatment with HIF1A inhibitor KC7F2. Thus, our data suggest FOXA1 loss induces aberrant hypoxia signaling and tumor progression in part via HIF1A.
Project description:Background - Hepatocellular carcinomas (HCCs) are heterogeneous tumors with respect to etiology, cell of origin and biology. The course of the disease is unpredictable and is in part dependent on the tumor microenvironment. One of the microenvironmental factors is hypoxia, which is known to promote aggressiveness in other malignant tumors. We hypothesized that certain regions in HCC exist with chronic hypoxia and a characteristic gene expression pattern. Moreover, during the development of HCC there is an important contribution of this chronic hypoxia on prognosis via this gene expression. Until now, most research has been performed in acute hypoxic models (< 24 hours). Methods – Human hepatoblastoma cells HepG2 were cultured in either normoxic (20% O2) or hypoxic (2% O2) conditions for 72 hrs, the time it takes to adapt to chronic hypoxia. After 3 days the cells were harvested and analyzed by microarray technology. The highly significant differentially expressed genes were selected and used to assess the clinical value of our in vitro chronic hypoxia gene signature in four published patient studies. Three of these independent microarray studies on HCC patients were used as training sets to determine a minimal prognostic gene set and one study was used for validation. Gene expression analysis and correlation with clinical outcome was assessed with the bioinfomatic method of Goeman et al (). Results – In the HepG2 cells, 3592 genes were differentially expressed in cells cultured at 2% oxygen for 72 hrs. Out of these, 265 showed a high significant change (2-fold change and p=0.0001). The level of gene expression after 72 hrs was different from the acute hypoxic response (during the first 24 hours) and represented chronicity. Using computational methods we identified 7 out of the 265 highly significant genes that showed correlation with prognosis in all three different training sets and this was independently validated in a 4th dataset. With our approach we could include the largest number of HCC patients in one single study. Conclusion – We identified a 7-gene signature, which is associated with chronic hypoxia and predicts prognosis in patients with HCC. In the future this signature could be used as a diagnostic tool. In addition, chronic hypoxia gene expression information can be used in the search for new therapeutic targets.
Project description:We report the application of chromatin immunoprecipitation and next generation sequencing technology for HIF1a binding sites at genome wide level in a RCC (renal cell carcinoma) cell line under hypoxia conditions. We found HIF1a binding sites in Caki-2 cell line under hypoxia conditions. Especially, we found HIF1a bind to SPOP under hypoxia condition, which was further validated.
Project description:MicroRNAs are small regulatory RNAs that post-transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet the underlying mechanisms are not well understood. Here, we identify tumor hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumor stem cell phenotypes that may underlie poor outcome in breast cancer. miRNA profiling of MCF7 cells in normal or hypoxic conditions or after DICER knockdown in MCF7 cells.