Project description:As a histone deacetylase inhibitor, sodium butyrate and its derivative sodium phenylbutyrate involve in cellular events such as proliferation, differentiation, apoptosis and cell cycle control via reprogramming gene expression. However, the gene associated with the cell cycle control and molecular signaling triggering cell apopotosis and death are not well elucidated. Here, we treated A549 cells,a cell line belong to the non-small cells lung cancer,with high concentration of sodium butyrate or sodium phenylbutyrate and then used microarray identified differentially-expressed mRNA during this process.
Project description:Analysis of colorectal cancer (CRC) cell line HT-29 treated with Sodium Butyrate. Sodium Butyrate, a HDAC inhibitor present in gut, can differentiate the undifferentiated HT-29 to enterocytes by the induction of brush border enzyme alkaline phosphatase. Results provide the transcriptional profiling underlying the butyrate-induced differentiation of CRC.
Project description:We analyzed a role of histone deacetylases in alternative splicing regulation. Using human exon arrays we identified a list of 683 genes whose splicing changes after HDAC inhibition with sodium butyrate. 6 samples (3 nontreated controls and 3 sodium butyrate treated cells)
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.