Project description:Legionella pneumophila is a Gram-negative facultative intracellular human pathogen with a distinct biphasic lifestyle. One of its primary environmental hosts in the free-living amoeba Acanthamoeba castellanii and its infection by L. pneumophila mimics that seen in human macrophages. Here we present analysis of strand specific sequencing of the transcriptional response of L. pneumophila in broth growth and in infection of A. castellanii.
Project description:The intracellular pathogen Legionella pneumophila (Lp) is a strict aerobe, surviving and replicating in environments where it frequently encounters reactive oxygen species, such as the nutrient-poor water environment and inside host cells. In many proteobacteria, the oxidative stress response is regulated by the LysR-type regulator OxyR; however, the role played by the OxyR homologue in Lp is still unclear. Therefore, we undertook the characterisation of the phenotypes associated with the deletion of OxyR in Lp. OxyR is dispensable for growth in rich broth, in amoeba and in human cultured macrophages, and for the survival of Lp in water. Nevertheless, the mutant was found to be more sensitive to hydrogen peroxide than the wild-type when grown to post-exponential phase, but not when grown to exponential phase. Moreover, the mutant is defective in forming isolated colonies on charcoal yeast extract (CYE) agar plates, but supplementation with anti-ROS molecules, such as pyruvate, α-ketoglutarate and catalase, rescued this defect. Further characterisation of this phenotype using a transcriptional reporter fusion and microarray analysis revealed that the deletion mutant is not defective for the expression of known anti-ROS genes which suggests that the growth defect on agar plates and the higher susceptibility to hydrogen peroxide are due to a broad change in the transcriptional response. Furthermore, the growth defect is suppressed when the mutant is grown on CYE plates made with agarose, suggesting that a compound present in typical agar is toxic for the oxyR mutant.
Project description:Legionella pneumophila is a Gram-negative facultative intracellular human pathogen with a distinct biphasic lifestyle. One of its primary environmental hosts in the free-living amoeba Acanthamoeba castellanii and its infection by L. pneumophila mimics that seen in human macrophages. Here we present analysis of strand specific sequencing of the transcriptional response of L. pneumophila in broth growth and in infection of A. castellanii. Examination of 2 infection and 3 broth growth time points
Project description:Legionella pneumophila is the causative agent of Legionnaires’ disease, an acute pulmonary infection. L. pneumophila is able to infect and multiply in both phagocytic protozoan, such as Acanthamoeba castellanii, and mammalian professional phagocytes. The best-known virulence determinant used by L. pneumophila to infect host cells is a Type IVb translocation system named Icm/Dot, which is used to modify the host cell functions to the benefit of the bacteria. To date the Icm/Dot systeme is known to translocate more than 100 effectors. While the transcriptional response of Legionella to the intracellular environement of A. castelannii as already been investigated, much less is known of how Legionella reacts transcriptionnally inside human macrophages. In this study, the transcriptome of L. pneumophila was monitored during exponential and post-exponential phase in rich AYE broth and during infection of human cultured macrophages by using microarray and a RNA amplification procedure called SCOTS to allow for the study of conditions of low bacterial loads. Among the genes induced intracellularly are those involved in amino acid synthesis pathway leading to L-arginine, L-histidne and L-proline as well as many transport system involved in amino acid and iron uptake. The Icm/Dot systems is not differentially expressed inside cells compare to the E phase control but the effectors are strongly induced. The intracellular transcriptome was further used to identify putative new Icm/Dot effectors and translocation was show to occur for 3 of them. This study provides a comprehensive view of how L. pneumophila react to the human macrophages intracellular environment.
Project description:Legionella pneumophila (Lp) is an opportunistic pathogen and its survival in water is critical for human infection. Therefore, identifying the genes of Lp that are required for survival in water may help devise strategies to prevent Legionella outbreaks. In this study, we exposed Lp in rich medium and in an artificial freshwater medium (Fraquil) for 2, 6 and 24 hours to uncover the global transcriptomic changes of Lp in water. The repression of major metabolic pathways, such as division, transcription and translation, suggests that Lp enters a dormant state in water. The induction of the flagellar associated genes (flg, fli and mot), enhance entry genes (enh) and some Icm/Dot effectors suggests that Lp may be waiting to establish intracellular replication in suitable host. Moreover, many genes involved in resistance to antibiotic and oxidative stress were induced, suggesting that Lp may be more tolerant to environmental stresses in water. Indeed, Lp exposed to water is more resistant to erythromycin, gentamycin and kanamycin than those cultured in rich medium. Apart from this, the gene bdhA involved in the degradation of the intracellular energy storage compound poly-hydroxybutyrate is highly expressed in water. Further characterization shows that bdhA is positively regulated by RpoS during short-term exposure to water. The deletion mutant of bdhA had a survival defect in water at 37°C, demonstrating that this gene is important for maintaining the long-term survivorship of Lp in water. Other identified genes highly induced upon exposure to water could also be necessary for Lp to survive in water. Legionella pneumophila Philadelphia-1 strain JR32 was grown in AYE broth at 25°C shaking to OD600 of 1 in triplicate. Samples were taken for analysis; this is the control. Then the cultures were washed three times in Fraquil and resuspended in Fraquil to an OD600 of 1 and transfered to vessels of bioreactior (Biostat Q-plus). Samples were taken after 2h, 6h and 24h.