Project description:Deciphering the in situ activities of microorganisms is essential for understanding the biogeochemical processes occurring in complex environments. Here we used environmental metaproteomics to obtain information about the identity and activity of subsurface microbial populations in coal-tar-contaminated groundwater. The present study reports metaproteomic data showing high representation of Candidatus Methylomirabilis oxyfera in our study site’s subsurface microbial community. In addition, eight of the nine proteins of the n-damo pathway were identified—indicating that n-damo is an active process occurring in situ in this habitat.
Project description:Deciphering the in situ activities of microorganisms is essential for understanding the biogeochemical processes occurring in complex environments. Here we used environmental metaproteomics to obtain information about the identity and activity of subsurface microbial populations in coal-tar-contaminated groundwater. The present study reports metaproteomic data showing high representation of Candidatus Methylomirabilis oxyfera in our study site’s subsurface microbial community. In addition, eight of the nine proteins of the n-damo pathway were identified—indicating that n-damo is an active process occurring in situ in this habitat.