Project description:Our previous studies demonstrated that specific inhibition of the BIG3-PHB2 complex, which is indispensable for estrogen (E2)-signaling activation, using ERAP, a dominant-negative peptide inhibitor, leads to the suppression of E2-dependent breast cancer cell growth in vitro and in vivo. However, duration of its effect is very short for clinical use. Here, we developed the chemically modified ERAP using stapling methods (stERAP; stapled ERAP) to improve duration of their antitumor effects. Tumor bearing mice treated with every 4 and 7 days with stERAP (1 mg/kg body weight) treatment effectively prevented the BIG3-PHB2 interaction, thereby releasing PHB2 to directly bind to both nuclear- and cytoplasmic ERalpha. This event led to the complete suppression of the E2-signalling pathways and ERalpha-positive breast cancer cell growth both in vitro and in vivo, but did not suppress the growth of normal mammary epithelial cells. Our findings suggest that the chemically modified stERAP may be a promising anti-tumor drug to suppress the growth of luminal-type breast cancer in clinical use.
Project description:ERα17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ERα) and initially synthesized to mimic its calmodulin binding site. ERα17p was subsequently found to elicit estrogenic responses in E2-deprived ERα-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ERα17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ERα17p induces a massive early (3h) transcriptional activity in breast cancer cell line T47D.
Project description:We and others have proposed that coactivator binding inhibitors, which block the interaction of estrogen receptor and steroid receptor coactivators, may represent a potential class of new breast cancer therapeutics. The development of coactivator binding inhibitors has been limited, however, because many of the current molecules which are active in in vitro and biochemical assays are not active in cell-based assays. Our goal in this work was to prepare a coactivator binding inhibitor active in cellular models of breast cancer. To accomplish this, we used molecular dynamics simulations to convert a high-affinity stapled peptide with poor cell permeability into R4K1, a cell-penetrating stapled peptide. R4K1 displays high binding affinity for estrogen receptor ɑ, inhibits the formation of estrogen receptor/coactivator complexes, and distributes throughout the cell with a high percentage of nuclear localization. R4K1 represses native gene transcription mediated by estrogen receptor ɑ and inhibits proliferation of estradiol-stimulated MCF-7 cells. Using RNA-Seq, we demonstrate that almost all of the effects of R4K1 on global gene transcription are estrogen receptor-associated. This chemical probe provides a significant proof-of-concept for preparing cell-permeable stapled peptide inhibitors of the estrogen receptor/coactivator interaction.
Project description:ERα17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ERα) and initially synthesized to mimic its calmodulin binding site. ERα17p was subsequently found to elicit estrogenic responses in E2-deprived ERα-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ERα17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ERα17p induces a massive early (3h) transcriptional activity in breast cancer cell line MDA-MB-231.
Project description:Estrogen receptor alpha (ERalpha) is a ligand-dependent transcription factor that plays an important role in breast cancer. Estrogen-dependent gene regulation by ERalpha can be mediated by interaction with other DNA-binding proteins, such as activator protein-1 (AP-1). The nature of such interactions in mediating the estrogen response in breast cancer cells remains unclear. Here we show that knockdown of c-Fos, a component of the transcription factor AP-1, attenuates the expression of 37% of all estrogen-regulated genes, suggesting that AP-1 is a fundamental factor for ERalpha-mediated transcription. Additionally, knockdown of c-Fos affected the expression of a number of genes that were not regulated by estrogen. Pathway analysis reveals that silencing of c-Fos downregulates an E2F1-dependent pro-proliferative gene network. Thus, modulation of the E2F1 pathway by c-Fos represents a novel mechanism by which c-Fos enhances breast cancer cell proliferation. Furthermore, we show that c-Fos and ERalpha can cooperate in regulating E2F1 gene expression by binding to regulatory elements in the E2F1 promoter. To start to dissect the molecular details of the cross-talk between AP-1 and estrogen signaling, we identify a novel ERalpha/AP-1 target, PKIB (cAMP-dependent protein kinase inhibitor-beta), which is overexpressed in ERalpha-positive breast cancer tissues. Knockdown of PKIB by siRNA results in drastic growth suppression of breast cancer cells. Collectively, our findings support AP-1 as a critical factor that governs estrogen-dependent gene expression and breast cancer proliferation programs. MCF-7 cells were transfected with a control siRNA or with the pool of siRNAs targeting c-Fos for 72 h and were then treated with vehicle or E2 for 24 h, and global gene expression profiles were assessed. Three or four biological replicates were used for each group.
Project description:Mufudza2012 - Estrogen effect on the dynamics
of breast cancer
This deterministic model shows the
dynamics of breast cancer with immune response. The effects of
estrogen are incorporated to study its effects as a risk factor for
the disease.
This model is described in the article:
Assessing the effects of
estrogen on the dynamics of breast cancer.
Mufudza C, Sorofa W, Chiyaka
ET.
Comput Math Methods Med 2012; 2012:
473572
Abstract:
Worldwide, breast cancer has become the second most common
cancer in women. The disease has currently been named the most
deadly cancer in women but little is known on what causes the
disease. We present the effects of estrogen as a risk factor on
the dynamics of breast cancer. We develop a deterministic
mathematical model showing general dynamics of breast cancer
with immune response. This is a four-population model that
includes tumor cells, host cells, immune cells, and estrogen.
The effects of estrogen are then incorporated in the model. The
results show that the presence of extra estrogen increases the
risk of developing breast cancer.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000642.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:ERα17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ERα) and initially synthesized to mimic its calmodulin binding site. ERα17p was subsequently found to elicit estrogenic responses in E2-deprived ERα-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ERα17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ERα17p induces a massive early (3h) transcriptional activity in breast cancer cell lines SKBR3). Remarkably, about 75% of the significantly modified transcripts were also modified by E2, confirming the pro-estrogenic profile of ERα17p. The different ER spectra of the used cell lines allowed us to extract a specific ERα17p signature related to ERα and its variant ERα36. With respect to ERα, the peptide activates nuclear (cell cycle, cell proliferation, nucleic acid and protein synthesis) and extranuclear signaling pathways. In contrast, through ERα36 it exerts inhibitory events on inflammation and cell cycle and inhibition of EGFR signaling. This is the first work reporting ERα36 specific transcriptional effects. The fact that a number ERα17p-induced transcripts is different from those activated by E2 revealed that the apoptosis and actin modifying effects of ERα17p are independent from the ER-related actions of the peptide.
Project description:Hormone therapy targeting estrogen receptor (ER) is the principal treatment for ER-positive breast cancers but many cancers develop resistance to anti-estrogens. Cyclin-dependent kinase 8 (CDK8) is a transcriptional regulator of several oncogenic pathways. Expression levels of CDK8 and ERα are inversely correlated in breast cancers suggesting a functional association between CDK8 and ER. CDK8 inhibition by selective small-molecule inhibitors, by shRNA knockdown or by CRISPR-Cas9 knockout suppressed estrogen-induced transcription, with no significant effects on ERα protein expression or phosphorylation. CDK8 inhibition also abrogated the mitogenic effect of estrogen on ER-positive breast cancer cells and potentiated growth inhibition by the ER antagonist fulvestrant. In vivo, administration of a CDK8 inhibitor suppressed ER-positive breast cancer xenograft growth and augmented the effects of fulvestrant with no apparent toxicity. CDK8 inhibitors also suppressed the development of estrogen independence in ER-positive breast cancer cells. These results identify CDK8 as a novel drug target for breast cancer therapy.
Project description:Triple negative breast cancers (TNBC) lacking estrogen, progesterone and HER2 receptors account for 10-20% of breast cancer and are indicative of poor prognosis. The development of effective treatment strategies therefore represents a pressing unmet clinical need. We previously identified a molecularly-targeted approach to target aberrant epigenetics of TNBC using a peptide corresponding to the SIN3 interaction domain (SID) of MAD. SID peptide selectively blocked binding of SID-containing proteins to the paired α-helix (PAH2) domain of SIN3, resulting in epigenetic and transcriptional modulation of genes associated with epithelial-mesenchymal transition (EMT). To find small molecule inhibitor (SMI) mimetics of SID peptide we performed an in silico screen for PAH2 domain-binding compounds. This led to the identification of the avermectin macrocyclic lactone derivatives selamectin and ivermectin (Mectizan) as candidate compounds. Both selamectin and ivermectin phenocopied the effects of SID peptide to block SIN3-PAH2 interaction with MAD, induce expression of CDH1 and ESR1 and restore tamoxifen sensitivity in MDA-MB-231 human and MMTV-Myc mouse TNBC cells in vitro. Treatment with selamectin or ivermectin led to transcriptional modulation of genes associated with EMT and maintenance of a cancer stem cell phenotype in TNBC cells. This resulted in impairment of clonogenic self-renewal in vitro and inhibition of tumor growth and metastasis in vivo. Underlining the potential of avermectins in TNBC, pathway analysis revealed that selamectin also modulated the expression of therapeutically-targetable genes. Consistent with this, an unbiased drug screen in TNBC cells identified selamectin-induced sensitization to a number of drugs, including those targeting modulated genes.
Project description:Estrogen receptor alpha (ERalpha) is a ligand-dependent transcription factor that plays an important role in breast cancer. Estrogen-dependent gene regulation by ERalpha can be mediated by interaction with other DNA-binding proteins, such as activator protein-1 (AP-1). The nature of such interactions in mediating the estrogen response in breast cancer cells remains unclear. Here we show that knockdown of c-Fos, a component of the transcription factor AP-1, attenuates the expression of 37% of all estrogen-regulated genes, suggesting that AP-1 is a fundamental factor for ERalpha-mediated transcription. Additionally, knockdown of c-Fos affected the expression of a number of genes that were not regulated by estrogen. Pathway analysis reveals that silencing of c-Fos downregulates an E2F1-dependent pro-proliferative gene network. Thus, modulation of the E2F1 pathway by c-Fos represents a novel mechanism by which c-Fos enhances breast cancer cell proliferation. Furthermore, we show that c-Fos and ERalpha can cooperate in regulating E2F1 gene expression by binding to regulatory elements in the E2F1 promoter. To start to dissect the molecular details of the cross-talk between AP-1 and estrogen signaling, we identify a novel ERalpha/AP-1 target, PKIB (cAMP-dependent protein kinase inhibitor-beta), which is overexpressed in ERalpha-positive breast cancer tissues. Knockdown of PKIB by siRNA results in drastic growth suppression of breast cancer cells. Collectively, our findings support AP-1 as a critical factor that governs estrogen-dependent gene expression and breast cancer proliferation programs.