Project description:Efficacy and safety of anticancer drugs are traditionally studied using cancer cell lines and animal models. Recently, a potential anticancer agent, JQ1, an inhibitor of bromodomain and extra terminal (BET) protein, has been shown to promote apoptosis of cancerous cells by arresting them in G1 phase of the cell cycle. However, the effect of JQ1 on normal cells is poorly understood. In this study, we investigated the safety of JQ1 by using human umbilical cord mesenchymal stem cells (MSCs) as an in vitro model system. Our results indicated that JQ1 induced cell cycle arrest in G1 phase of MSCs, but did not promote apoptosis. Microarray analysis of MSCs treated with JQ1 indicated that it down-regulated genes involved not only in cell cycle regulation but also DNA replication, mitosis, and cell division. Although many studies have suggested the potential of JQ1 as an anticancer agent, our findings suggest that it caused a deleterious effect on normal cells and may not be safe for anticancer therapy. Human umbilical cord derived MSCs were cultured in vitro and treated with either 100 nM or 500 nM JQ1 for 24 hrs. Gene expression of treated cells was compared to untreated cultured cells.
Project description:JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody secreting cell differentiation. ChIP-sequencing reveals a selective displacement of Brd4 in response to acute JQ1 treatment (<2 hours), resulting in specific transcriptional repression. After 8 hours, subsequent alterations in gene expression arose as a result of global loss of Brd4 occupancy. We demonstrate that apoptosis induced by JQ1 was solely attributed to the pro-apoptotic protein Bim (Bcl2l11). Conversely, cell cycle regulation by JQ1 was associated with multiple Myc-associated gene targets. Our results demonstrate that JQ1 drives temporal changes in Brd4 displacement that results in a specific transcriptional profile that directly affects B cell survival and proliferation to modulate the humoral immune response.
Project description:Efficacy and safety of anticancer drugs are traditionally studied using cancer cell lines and animal models. Recently, a potential anticancer agent, JQ1, an inhibitor of bromodomain and extra terminal (BET) protein, has been shown to promote apoptosis of cancerous cells by arresting them in G1 phase of the cell cycle. However, the effect of JQ1 on normal cells is poorly understood. In this study, we investigated the safety of JQ1 by using human umbilical cord mesenchymal stem cells (MSCs) as an in vitro model system. Our results indicated that JQ1 induced cell cycle arrest in G1 phase of MSCs, but did not promote apoptosis. Microarray analysis of MSCs treated with JQ1 indicated that it down-regulated genes involved not only in cell cycle regulation but also DNA replication, mitosis, and cell division. Although many studies have suggested the potential of JQ1 as an anticancer agent, our findings suggest that it caused a deleterious effect on normal cells and may not be safe for anticancer therapy.
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. ChIP-seq in parental and JQ1 resistant triple negative breast cancer (TNBC) in response to DMSO or JQ1 treatment
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. RNA-Seq in parental and JQ1 resistant triple negative breast cancer (TNBC) in response to DMSO or JQ1 treatment over time
Project description:Type II testicular germ cell cancers (GCC) are the most frequently diagnosed tumors in young men (20 - 40 years) and are classified as seminoma or non-seminoma. GCCs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas display only incomplete remission or relapse and require novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumor therapy, which interferes with the function of bromodomain and extra-terminal (BET)-proteins. Here, we demonstrate that upon JQ1 doses ≥ 250 nM GCC cell lines and Sertoli cells display compromised survival and induction of cell cycle arrest. JQ1 treated GCC cell lines display upregulation of genes indicative for DNA damage and a cellular stress response. Additionally, downregulation of pluripotency factors and induction of mesodermal differentiation was detected. GCCs xenografted in vivo showed a reduction in tumor size, proliferation and angiogenesis when subjected to JQ1 treatment. The combination of JQ1 and the histone deacetylase inhibitor romidepsin further enhanced the apoptotic effect in vitro and in vivo. Thus, we propose that JQ1 alone, or in combination with romidepsin may serve as a novel therapeutic option for GCCs.
Project description:Bromodomain and extra terminal domain (BET) proteins are important epigenetic regulators facilitating the transcription of genes in chromatin areas linked to acetylated histones. JQ1, a BET protein inhibitor, has antiproliferative activity against many cancers, mainly through inhibition of c-MYC and upregulation of p21. In this research, we investigated the use of JQ1 for human osteosarcoma (OS) treatment. JQ1 significantly inhibited the proliferation and survival of OS cells inducing G1 cell cycle arrest, premature senescence, but little effect on apoptosis. Interestingly, c-MYC protein levels in JQ1-treated cells remained unchanged, whereas the upregulation of p21 protein was still observable. Although effective in vitro, JQ1 alone failed to reduce the size of the MNNG/HOS xenografts in immunocompromised mice. To overcome the resistance of OS cells to JQ1 treatment, we combined JQ1 with rapamycin, an mTOR inhibitor. JQ1 and rapamycin synergistically inhibited the growth and survival of OS cells in vitro and in vivo. We also identified that RUNX2 is a direct target of BRD4 inhibition by JQ1 in OS cells. Chromatin immunoprecipitation (ChIP) showed that enrichment of BRD4 protein around RUNX2 transcription start sites diminished with JQ1 treatment in MNNG/HOS cells. Overexpression of RUNX2 protected JQ1-sensitive OS cells from the effect of JQ1, and siRNA-mediated inhibition of RUNX2 sensitized the same cells to JQ1. In conclusion, our findings suggest that JQ1, in combination with rapamycin, is an effective chemotherapeutic option for OS treatment. We also show that inhibition of RUNX2 expression by JQ1 partly explains antiproliferative activity of JQ1 in OS cells. MNNG/HOS cells treated with 7.5mM JQ1, 12.5nM Rapamycin or both were used for RNA extraction and hybridization on Affymetrix microarrays. We compared these microarray samples with the corresponding control (treated with DMSO).